1. a) The chart below is an outline of part of the periodic table

- With the help of vertical and horizontal lines, indicate the direction of increasing metallic nature and the elements (2 marks)
- ii) Which type of elements are represented in the shaded area?

(1 mark)

Student Bounty.com

- b) 'i) Element A is in the same group of the periodic table as chlorine. Write the formula of the compound formed when A reacts with potassium metal. (1 mark)
 - ii) What type of bonding exists in the compound formed in (b) (i) above?

(3 marks)

- Starting with aqueous magnesium sulphate, describe how you would obtain a sample of magnesium oxide (3 marks)
- d) Write two ionic equations to show that aluminium hydroxide is amphoteric

(2 marks)

2. a) The diagram below is a cross-section of a dry cell. Study it and answer the questions that follow

i) On the diagram, show with a (+) sign the positive terminal

(1 mark)

iii) The zinc can is lined with ammonium chloride and zinc chloride paste. What would happen if the mixture was to become dry? Give a reason (2 marks)

Qae Con

iv) Give one advantage and one disadvantage of dry cells

(2 marks)

b) The set-up below was used to electrolyse molten lead (II) iodide

State the observation that was made at the anode during the electrolysis.
 Give a reason for your answer

(2 marks)

- ii) A current of 0.5A was passed for two hours. Calculate the mass of lead that was deposited. (Pb= 207 1 Faraday = 96 500C)
 (3 marks)
- 3. a) State two differences between chemical and nuclear reactions

(2 marks)

b) Below is a radioactive decay series starting from ²¹⁴₈₃Bi and ending at ²¹⁴₈₃pb. Study it and answer the questions that follow

$$\begin{array}{c}
214 \\
83
\end{array} Bi \xrightarrow{stepl}
\begin{array}{c}
210 \\
81
\end{array} Tl \xrightarrow{steplI}
\begin{array}{c}
210 \\
82
\end{array} Pb \xrightarrow{steplII}
\begin{array}{c}
210 \\
83
\end{array} Bi$$

$$\downarrow Step IV$$

$$\begin{array}{c}
200 \\
82
\end{array} Pb \leftarrow
\begin{array}{c}
stepV \\
84
\end{array} Po$$

i) Identify the particles emitted in steps I and III (2 marks)

II 2000

ii) Write the nuclear equation for the reaction which takes place in step V (1 mark)

c) The table below gives the percentages of a radioactive isotope of Bismuth that remains after decaying at different times

time (min)	0	6	12	22	38	62	100
percentage of Bismuth	100	81	65	46	29	12	3

 On the grid provided plot a graph of the percentage of Bismuth remaining (Vertical axis) against time. (3 marks)

ii) Using the graph, determine the:

I half-life of the Bismuth

(1 mark)

d)	Give one use of radioacti	ve isoto	pes in m	edicine				(1 mark)
	on the second			2				
	\$ \tilde{\chi}_{\text{co}}							
	cess marble chips (calcium							
	rochloric acid. The beaker				ance and	the total	loss in ma	ass recorde
	er every two minutes as sho				1.6			
4	C Time (min)	0	'2	4	6	8	10	
e ,	Total loss in mass (g)	0	1.8	2.45	2.95	3.2	3.3	
a)	Why was there a loss in n	nass?						(1 mark
b)	Calculate the average rate i) 0 and 2 minutes	e of loss	s in mass	between			5 1987	(1 mark
2400	ii) 6 and 8 minutes							19
	iii) Explain the differenc	e in the				ds a	1 (") 1	
-		c in the	average	rates of i	reaction is	n (b) (i) i	and (11) ab	(2 marks
c)	Write the equation for the						and (n) ab	(2 marks
c) d)	Write the equation for the	e reactio	on which	takes pla	ce in the	beaker		(2 marks
- 61 1 <u>12-22</u> 12-23		e reaction the rat	on which e of the r	takes pla eaction a	ce in the	beaker Id be inc	reased	(1 marks) (3 marks)
d)	State three ways in which The solution in the beake	the rate was e	on which e of the r vaporated re left in t	takes pla	ce in the bove cou	beaker ld be ince	reased would ha	(2 marks (1 marks (3 marks)

Write the chemical formula of the major component of bauxite i) Name two major impurities in bauxite	(1 mark)
i) Name two major impurities in bauxite	(2 marks)
- 	
. 30 ⁵¹	
ii) Explain how the impurities in bauxite	(3 marks)
Cryolite is used in the extraction of aluminium from bauxite. State its function	
Describe how carbon dioxide is formed during the extraction of aluminium	(2 marks)
Aluminium is a reactive metal yet utensils madeof aluminium do not corrode ea	asily. (2 marks)
	Cryolite is used in the extraction of aluminium from bauxite. State its function Describe how carbon dioxide is formed during the extraction of aluminium

6. The set-up below was used to prepare hydrogen gas.

a) Complete the diagram to show how a dry sample of hydrogen gas can be collected (3 marks)

c)	1.2 litres of hydrogen gas was produced at room	temperature and pressure when 3.27 of
100	zinc were used. Determine the relative atomic n	nass of zinc.
	(Molar gas volume is 24 litres)	(4 marks)
	JOY MIT	
	air atr	¥.

State two industrial uses of hydrogen gas

(2 marks)

- a) State how burning can be used to distinguish between ethane and ethyne. Explain your answer
 (3 marks)
 - b) Draw the structural formula of the third member of the homologous series of ethyne
 (1 mark)
 - c) The flowchart below shows a series of reactions starting with ethanol. Study it and answer the questions that follow.

Il Substances B and C

B process A

Write the equation for the combustion of ethanol

(1 mark)

iv) State one use of methane

(1 mark)