Student Bout

| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                     |                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Paper : <b>III</b>                                                                                                                                                                                                                                     | 13                                                                                                                                                 |
| '                                                                                                                                                                                                                                                           | Test Booklet Serial No. :                                                                                                                          |
| Test Subject : MATHEMATICAL SCIENCE                                                                                                                                                                                                                         | OMR Sheet No. :                                                                                                                                    |
| Test Subject Code : K-2613                                                                                                                                                                                                                                  | Doll No.                                                                                                                                           |
| •                                                                                                                                                                                                                                                           | Roll No. (Figures as per admission card)                                                                                                           |
| Name & Signature of Invigilator/s                                                                                                                                                                                                                           | (Figures as per aurilission card)                                                                                                                  |
| • Hamo & Orginator of invigilator, o                                                                                                                                                                                                                        |                                                                                                                                                    |
| Signature:                                                                                                                                                                                                                                                  | Signature:                                                                                                                                         |
| Name :                                                                                                                                                                                                                                                      | Name :                                                                                                                                             |
| Paper :                                                                                                                                                                                                                                                     | III S                                                                                                                                              |
| <u> </u>                                                                                                                                                                                                                                                    | MATHEMATICAL SCIENCE                                                                                                                               |
| Time : 2 Hours 30 Minutes                                                                                                                                                                                                                                   | Maximum Marks: 150                                                                                                                                 |
| Number of Pages in this Booklet : 24                                                                                                                                                                                                                        | Number of Questions in this Booklet : <b>75</b>                                                                                                    |
| -<br>                                                                                                                                                                                                                                                       | Instructions for the Candidates                                                                                                                    |
| ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು                                                                                                                                                                                                                                      | Write your roll number in the space provided on the top of this page.                                                                              |
| <ol> <li>ಈ ಪುಟದ ಮೇಲ್ತುದಿಯಲ್ಲಿ ಒದಗಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ನಿಮ್ಮ ರೋಲ್ ನಂಬರನ್ನು ಬರೆಯಿರಿ.</li> <li>ಈ ಪತ್ರಿಕೆಯು ಬಹು ಆಯ್ಕೆ ವಿಧದ ಎಪ್ಪತ್ತೈದು ಪ್ರಶ್ನೆಗಳನ್ನು ಒಳಗೊಂಡಿದೆ.</li> <li>ಪರೀಕ್ಷೆಯ ಪ್ರಾರಂಭದಲ್ಲಿ, ಪ್ರಶ್ನೆಪ್ರಸ್ತಿಕೆಯನ್ನು ನಿಮಗೆ ನೀಡಲಾಗುವುದು. ಮೊದಲ 5 ನಿಮಿಷಗಳಲ್ಲಿ</li> </ol> | This paper consists of seventy five multiple-choice type of questions.     At the commencement of examination, the question booklet will           |
| 3. ಮನ್ನುಯಪ್ರಾಲಂಭದಲ್ಲ, ಪ್ರಶ್ನಪ್ರಾಯನ್ನು ನಮಗಿನ ಜಲಾಗಿರುದು ಮಾಹಲ 3 ನಮಮ ಗಳ್ಲ<br>ನೀವು ಪ್ರಸ್ತಿಕೆಯನ್ನು ತೆರೆಯಲು ಮತ್ತು ಕೆಳಗಿನಂತೆ ಕಡ್ಡಾಯವಾಗಿ ಪರೀಕ್ಷಿಸಲು ಕೋರಲಾಗಿದೆ.                                                                                                       | be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:                               |
| (i) ಪ್ರಶ್ನೆ ಪುಸ್ತಿಕೆಗೆ ಪ್ರವೇಶಾವಕಾಶ ಪಡೆಯಲು, ಈ ಹೊದಿಕೆ ಪುಟದ ಅಂಚಿನ ಮೇಲಿರುವ                                                                                                                                                                                      | (i) To have access to the Question Booklet, tear off the paper                                                                                     |
| ಪೇಪರ್ ಸೀಲನ್ನು ಹರಿಯಿರಿ. ಸ್ಟಿಕ್ಟರ್ ಸೀಲ್ ಇಲ್ಲದ ಪ್ರಶ್ನೆಪುಸ್ತಿಕೆ ಸ್ವೀಕರಿಸಬೇಡಿ. ತೆರೆದ<br>ಪುಸ್ತಿಕೆಯನ್ನು ಸ್ವೀಕರಿಸಬೇಡಿ.                                                                                                                                              | seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.                               |
| ಪುತ್ತಾರಿಯನ್ನು ಸ್ವೇರಂಸವನು.<br>(ii) ಪುಸ್ತಿಕೆಯಲ್ಲಿನ ಪ್ರಶ್ನೆಗಳ ಸಂಖ್ಯೆ ಮತ್ತು ಪುಟಗಳ ಸಂಖ್ಯೆಯನ್ನು ಮುಖಪುಟದ ಮೇಲೆ                                                                                                                                                      | (ii) Tally the number of pages and number of questions in the booklet with the information printed on the                                          |
| ಮುದ್ರಿಸಿದ ಮಾಹಿತಿಯೊಂದಿಗೆ ತಾಳೆ ನೋಡಿರಿ. ಪುಟಗಳು/ಪ್ರಶ್ನೆಗಳು ಕಾಣೆಯಾದ,                                                                                                                                                                                             | cover page. Faulty booklets due to pages/questions                                                                                                 |
| ಅಥವಾ ದ್ವಿಶ್ರತಿ ಅಥವಾ ಅನುಕ್ರಮವಾಗಿಲ್ಲದ ಅಥವಾ ಇತರ ಯಾವುದೇ ವ್ಯತ್ಯಾಸದ<br>ದೋಷಪೂರಿತ ಪುಸ್ತಿಕೆಯನ್ನು ಕೂಡಲೆ 5 ನಿಮಿಷದ ಅವಧಿ ಒಳಗೆ, ಸಂವೀಕ್ಷಕರಿಂದ ಸರಿ                                                                                                                          | missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately                                            |
| ಇರುವ ಪುಸ್ತಿಕೆಗೆ ಬದಲಾಯಿಸಿಕೊಳ್ಳಬೇಕು. ಆ ಬಳಿಕ ಪ್ರಶೈ ಪತ್ರಿಕೆಯನ್ನು                                                                                                                                                                                                | by a correct booklet from the invigilator within the                                                                                               |
| ಬದಲಾಯಿಸಲಾಗುವುದಿಲ್ಲ, ಯಾವುದೇ ಹೆಚ್ಚು ಸಮಯವನ್ನೂ ಕೊಡಲಾಗುವುದಿಲ್ಲ.                                                                                                                                                                                                  | period of 5 minutes. Afterwards, neither the Question of Booklet will be replaced nor any extra time will be given.                                |
| <ul> <li>4. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೂ(A), (B), (C) ಮತ್ತು (D) ಎಂದು ಗುರುತಿಸಿದೆ ನಾಲ್ಕು ಪರ್ಯಾಯ<br/>ಉತ್ತರಗಳಿವೆ. ನೀವು ಪ್ರಶ್ನೆಯ ಎದುರು ಸರಿಯಾದ ಉತ್ತರದ ಮೇಲೆ, ಕೆಳಗೆ ಕಾಣಿಸಿದಂತೆ</li> </ul>                                                                                   | 4. Each item has four alternative responses marked (A), (B), (C)                                                                                   |
| ಅಂಡಾಕೃತಿಯನ್ನು ಕಪ್ಪಾಗಿಸಬೇಕು.                                                                                                                                                                                                                                 | and (D). You have to darken the oval as indicated below on the correct response against each item.                                                 |
| ಉದಾಹರಣೆ: `A B                                                                                                                                                                                                                                               | Example: (A) (B) (D)                                                                                                                               |
| (C) ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದಾಗ.<br>5. ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಗಳನ್ನು, ಪತ್ರಿಕೆIII ಪುಸ್ತಿಕೆಯೊಳಗೆ ಕೊಟ್ಟಿರುವOMR ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ                                                                                                                                            | where (C) is the correct response.                                                                                                                 |
| ್ರಾಶ್ವಗಳಗಳುತ್ತರಗಳನ್ನು, ಪತ್ರಕಗಗ ಪುಸ್ತಕಯಾಳಿಗೆ ಕುಣ್ಣಬಹುರಗಳಗೆ ಕುಣ್ತರ ಹಾಳೆಯಲ್ಲಿ<br>ಮಾತ್ರವೇ ಸೂಚಿಸತಕ್ಕದ್ದು, OMR ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿನ ಅಂಡಾಕೃತಿ ಹೊರತುಪಡಿಸಿ ಬೇರೆ                                                                                                          | ` '                                                                                                                                                |
| ಯಾವುದೇ ಸ್ಥಳದಲ್ಲಿ ಗುರುತಿಸಿದರೆ, ಆದರ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾಗುವುದಿಲ್ಲ.                                                                                                                                                                                                 | <ol><li>Your responses to the question of Paper III are to be indicated<br/>in the OMR Sheet kept inside the Booklet. If you mark at any</li></ol> |
| 6. OMR ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಕೊಟ್ಟ ಸೂಚನೆಗಳನ್ನು ಜಾಗರೂಕತೆಯಿಂದ ಓದಿರಿ.                                                                                                                                                                                                | place other than in the ovals in OMR Answer Sheet, it will not be                                                                                  |
| 7. ಎಲ್ಲಾ ಕರಡು ಕೆಲಸವನ್ನು ಪುಸ್ತಿಕೆಯ ಕೊನೆಯಲ್ಲಿ ಮಾಡತಕ್ಕದ್ದು .                                                                                                                                                                                                   | evaluated.  6. Read the instructions given in OMR carefully.                                                                                       |
| <ol> <li>ನಿಮ್ಮ ಗುರುತನ್ನು ಬಹಿರಂಗಪಡಿಸಬಹುದಾದ ನಿಮ್ಮ ಹೆಸರು ಅಥವಾ ಯಾವುದೇ<br/>ಚಿಹ್ಕೆಯನ್ನು, ಸಂಗತವಾದ ಸ್ಥಳ ಹೊರತು ಪಡಿಸಿ, OMR ಉತ್ತರ ಹಾಳೆಯ ಯಾವುದೇ</li> </ol>                                                                                                              | 7. Rough Work is to be done in the end of this booklet.                                                                                            |
| ●                                                                                                                                                                                                                                                           | If you write your name or put any mark on any part of the OMR     Answer Sheet, except for the space allotted for the relevant                     |
| ● 9. ಪರೀಕ್ಷೆಯು ಮುಗಿದನಂತರ, ಕಡ್ಡಾಯವಾಗಿ OMR ಉತ್ತರ ಹಾಳೆಯನ್ನು ಸಂವೀಕ್ಷಕರಿಗೆ                                                                                                                                                                                       | entries, which may disclose your identity, you will render yourself                                                                                |
| ನೀವು ಹಿಂತಿರುಗಿಸಬೇಕು ಮತ್ತು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಹೊರಗೆ OMR ನ್ನು ನಿಮ್ಮೊಂದಿಗೆ                                                                                                                                                                                         | liable to disqualification.  9. You have to return the test OMR Answer Sheet to the invigilators                                                   |
| ಕೊಂಡೊಯ್ಯ ಕೂಡದು.                                                                                                                                                                                                                                             | at the end of the examination compulsorily and must NOT                                                                                            |
| <ol> <li>ಪರೀಕ್ಷೆಯ ನಂತರ, ಪರೀಕ್ಷಾ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯನ್ನು ಮತ್ತು ನಕಲು OMR ಉತ್ತರ ಹಾಳೆಯನ್ನು<br/>ನಿಮೊಂದಿಗೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.</li> </ol>                                                                                                                          | carry it with you outside the Examination Hall.                                                                                                    |
| 11. ನೀಲಿ/ಕಪ್ಪುಬಾಲ್ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರವೇ ಉಪಯೋಗಿಸಿದಿ                                                                                                                                                                                                           | You can take away question booklet and carbon copy of OMR Answer Sheet soon after the examination.                                                 |
| 12. ಕ್ಯಾಲ್ಕುಲೇಟರ್ ಅಥವಾ ಲಾಗ್ ಟೇಬಲ್ ಇತ್ಯಾದಿಯ ಉಪಯೋಗವನ್ನು ನಿಷೇಧಿಸಲಾಗಿದೆ.                                                                                                                                                                                        | 11. Use only Blue/Black Ball point pen.                                                                                                            |
| 13. ಸರಿ ಅಲ್ಲದ ಉತ್ತರಗಳಿಗೆ ಋಣ ಅಂಕ ಇರುವುದಿಲ್ಲ .                                                                                                                                                                                                                | <ul><li>12. Use of any calculator or log table etc., is prohibited.</li><li>13. There is no negative marks for incorrect answers.</li></ul>        |
| K-2613                                                                                                                                                                                                                                                      | ಪು.ತಿ.ನೋ./P.T.O.                                                                                                                                   |



Student Bounty.com **Total Number of Pa** 

### **MATHEMATICAL SCIENCE** Paper – III

**Note**: This paper contains **seventy five** (75) objective type questions. **Each** question carries two (2) marks. All questions are compulsory.

**1.** If 0 < a < b, then

$$\int_{0}^{\infty} \frac{\tan^{-1} ax - \tan^{-1} bx}{x} dx =$$
(A) 
$$\frac{\pi}{2} \log \frac{a}{b}$$
(B) 
$$\frac{\pi}{4} \log \frac{a}{b}$$

- (C)  $\frac{\pi}{6} \log \frac{a}{b}$  (D)  $\frac{\pi}{2} \log \frac{b}{a}$

OR

$$\lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\tan x} =$$

- (A) e
- (B)  $\frac{1}{2}$
- (C) 0
- (D) 2

**2.** Let the function  $f: \mathbb{R}^2 \to \mathbb{R}$  be defined by

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{for } (x, y) \neq (0, 0) \\ 0, & \text{for } (x, y) = (0, 0) \end{cases}$$

Which one of the following statements is true?

- (A) f is not continuous at (0, 0)
- (B) f is continuous at (0, 0)
- (C) f has no partial derivatives at (0, 0)
- (D) f is differentiable at (0, 0)

OR

Which of the following is necessarily true on the set  $S \cap T$  if  $S = \{x : f(x) = 0\}$  and  $T = \{x : g(x) = 0\}$ ?

(A) 
$$\frac{f(x)}{g(x)} = 0$$

(B) 
$$\frac{g(x)}{f(x)} = 0$$

- (C)  $(f(x))^2 + (g(x))^2 = 0$ (D) f(x) g(x) = 1
- **3.** Let S be a subset of  $\mathbb{R}$ . Let C be the set of points  $x \in \mathbb{R}$  with the property that  $S_n(x - \delta, x + \delta)$  is uncountable for every  $\delta$  >0. Then S – C is
  - (A) Uncountable
  - (B) Finite or countable
  - (C) Empty
  - (D) Always finite

The series  $\sum_{p=1}^{\infty} \frac{1}{p^p}$  is divergent for what values of p?

- (A)  $p \ge 1$
- (B) p > 1
- (A)  $p \ge 1$  (B) p > 1 (C)  $p \le 1$  (D) p < 1

**4.** If  $a_n > 0$  for all n and  $\sum a_n$  converges, then  $\sum \sqrt{a_n a_{n+1}}$ 

- (A) Converges
- (B) Diverges
- (C) Oscillates
- (D) Converges to the sum of  $\sum a_n$

OR

Paper III



The function  $f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$ has a minimum at which point?

- (A) Nowhere
- (B) (-1, 5)
- (C) (5, -1)
- (D) (3,3)
- 5. Which one of the following improper integral diverges?
  - (A)  $\int_0^1 \frac{\log x}{\sqrt[4]{x}} dx$
  - (B)  $\int_0^\infty e^{-x^2} dx$
  - (C)  $\int_0^\infty \frac{7e^{-x} 1}{\sqrt[3]{1 + 2x^2}} \, dx$
  - D)  $\int_{0}^{\frac{1}{2}} \log \left( \frac{1}{x} \right) dx$ OR

If  $x \in (0, 1)$  and

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational,} \\ \left\lceil \frac{1}{x} \right\rceil^{-1} & \text{if } x \text{ is irrational,} \end{cases}$$

with [x] equal to the integer part of x, what

is 
$$\int_{0}^{1} f(x) dx$$
 equal to ?

- (A) Not defined
- (B) Infinity
- (C) 1
- (D) 0

Student Bounty.com 6. Let f be a real valued function defined all  $x \ge 1$  satisfying f(1) = 1 and

$$f'(x) = \frac{1}{x^2 + (f(x))^2}$$
. Then

- (A)  $\lim_{x\to\infty} f(x) < 1 + \frac{\pi}{4}$
- (B)  $\lim_{x \to \infty} f(x) > 1 + \frac{\pi}{4}$
- (C)  $\lim_{x\to\infty} f(x) < \frac{\pi}{4}$
- (D)  $\lim_{x\to\infty} f(x) = 1 + \frac{\pi}{4}$

OR

$$\label{eq:An} \text{If} \quad A_n = \begin{cases} \left(\frac{1}{n}, \frac{2}{3} - \frac{1}{n}\right) & \text{if n is odd,} \\ \left(\frac{1}{3} - \frac{1}{n}, 1 + \frac{1}{n}\right) & \text{if n is even,} \end{cases}$$

 $n \ge 1$ ,  $\lim_n \sup A_n$  and  $\lim_n \inf A_n$  are respectively equal to what?

- (A) [0, 1] and  $\left| \frac{1}{3}, \frac{2}{3} \right|$
- (B) (0, 1] and  $\left|\frac{1}{3}, \frac{2}{3}\right|$
- (C) (0, 1) and  $\left(\frac{1}{3}, \frac{2}{3}\right)$
- (D) [0, 1) and  $\left(\frac{1}{3}, \frac{2}{3}\right)$

Student Bounty.com **Total Number of Pa** 

- 7. Suppose that f is twice differentiable on  $(0,\infty)$ , f" is bounded on  $(0,\infty)$  and
  - $f(x) \to 0$  as  $x \to \infty$ . Then  $\lim_{x \to \infty} f'(x)$  is
  - equal to
  - (A) infinity
  - (B) 0
  - (C) 1
  - (D)  $\frac{1}{2}$
- OR

What is the index of the quadratic form

$$2x_1^2 + x_2^2 - 3x_3^2 - 8x_2x_3 - 4x_1x_3 + 12x_1x_2$$
?

- (C) 0
- (D) 1
- 8.  $\lim_{n \to \infty} \frac{1}{n} \left( 1 + \sqrt{2} + \sqrt[3]{3} + ... + \sqrt[n]{n} \right) =$ 
  - (A) 0
- (B) 1
- (C) ∞
- (D)  $\frac{1}{2}$
- OR

What is the set of eigen values of the

matrix 
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
?

- (A) {2, 3, 6}
- (B) {2, 6, 7}
- $(C) \{-2, 3, 6\}$
- (D) {1, 3, 6}
- **9.** The sequence  $\{x_n\}$  defined by

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}, n = 1, 2, ..., i_s$$

- (A) Not a monotonic sequence
- (B) A Cauchy sequence
- (C) A bounded sequence
- (D) Not a convergent sequence

# Paper III

OR

If [x] is the integer part of x, wha

 $\int_{1}^{1} [x]^{3} dx equal to ?$ 

- (A) 1025
- (B) 55
- (C) 3025
- (D) 125
- 10. The series  $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} \sqrt{n}}{n^X}$ 
  - (A) Converges for all  $x > \frac{1}{2}$
  - (B) Converges for all  $x < \frac{1}{2}$
  - (C) Converges for  $x = \frac{1}{2}$
  - (D) Diverges for all x

OR

Which of the following functions is not of bounded variation on the interval [0, 1]?

- (A)  $f(x) = x^2$
- (B)  $f(x) = x^{\frac{1}{3}}$

(C) 
$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

(D) 
$$f(x) = \begin{cases} x cos(\frac{\pi}{2x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

11. Which one of the following series is convergent?

(A) 
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(A) 
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 (B)  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 

(C) 
$$\sum_{n=1}^{\infty} \frac{3n+2}{4n+5}$$

(C) 
$$\sum_{n=1}^{\infty} \frac{3n+2}{4n+5}$$
 (D)  $\sum_{n=1}^{\infty} \left(n-\frac{1}{n}\right)$ 

**Total Number of Pa** 

Which of the following is a sufficient condition for  $\int f d\alpha$  to exist?

- (A) f is continuous on [a, b] and  $\alpha$  is continuous on [a, b]
- (B) f is continuous on [a, b] and  $\alpha$  is of bounded variation on [a, b]
- (C) f is of bounded variation on [a, b] and  $\alpha$  is continuous on [a, b]
- (D) f is of bounded variation on [a, b] and  $\alpha$  is of bounded variation on [a, b]
- **12.** Which one of the following statements is not true?
  - (A) A countable union of countable sets is countable
  - (B) A set A of all sequences whose elements are the digits 0 and 1 is uncountable
  - (C) Non empty perfect set in  $\mathbb{R}^n$  is countable
  - (D) The set  $\mathbb{Z}^+ \times \mathbb{Z}^+$  is countable OR

Let  $N = \{1, 2, 3, ...\}$  and  $x = \{A \subset N : A \text{ is }$ finite or A<sup>⊂</sup> is finite} which of the following is not true?

- (A) x is a class of subsets of N
- (B) x is a field but not a sigma-field
- (C) x is not finite
- (D) x is a sigma-field

- Student Bounty.com 13. Which one of the following statements not true?
  - (A) If  $x, y \in \mathbb{R}$  and x > 0, then there is a positive integer n such that  $n \times y$
  - (B) Between any two real numbers there exists a rational number
  - (C) The set 

    R of real numbers does not have the least upper bound property
  - (D) For every real x > 0 and every integer n > 0 there is one and only one real y such that  $y^n = x$

OR

Which of the following is true for arbitrary non-null  $n \times n$  matrices A, B, n > 2?

- (A) Trace (AB BA) = 0
- (B) B =  $T^{-1}AT$  with  $|T| \neq 0$
- (C)  $(A + B) (A B) = A^2 B^2$
- (D) (A + B)' = A + B
- **14.** Which one of the following statements is not true?
  - (A) Every convergent sequence in ℝ is bounded
  - (B) Every bounded sequence in ℝ contains a convergent subsequence
  - (C) The set of subsequential limits of a sequence in R is not closed
  - (D) A sequence in R is convergent if and only if it is a Cauchy sequence

OR

If S is the positively oriented circle |z-3i|=2, what is the value of  $\int_{s}^{c} \frac{dz}{z^2+4}$ ?

(A) 
$$-\frac{\pi}{2}$$

(B) 
$$\frac{\pi}{2}$$

(C) 
$$-i\frac{\pi}{2}$$

(D) 
$$i\frac{\pi}{2}$$

K-2613 Paper III

**15.** 
$$\lim_{n \to \infty} \left( 1 - \frac{1}{2n} \right)^{n+1} =$$

- (A)  $\sqrt{e}$
- (B)  $\frac{1}{\sqrt{8}}$
- (C) e
- (D)  $\frac{1}{2}$

OR

At z = 0, the function  $\frac{e^z}{z(1-e^{-z})}$  has which one of the following?

- (A) Removable singularity
- (B) Pole of order 1
- (C) Pole of order 2
- (D) Essential singularity
- **16.** If A is an  $m \times n$  matrix and B is a non-singular matrix of order m, then
  - (A) rank (BA)  $\neq$  rank (A)
  - (B) rank(BA) > rank(A)
  - (C)  $rank(BA) \leq rank(A)$
  - (D) rank(BA) = rank(A)

OR

For what values of z does

$$\sum_{n=0}^{\infty} 3^{-n} (z-1)^{2n}$$
 converges ?

- (A)  $|z| \le 3$
- (B)  $|z| \leq \sqrt{3}$
- (C)  $|z-1| < \sqrt{3}$  (D)  $|z-1| \le \sqrt{3}$

**Total Number of Pa** 

- Student Bounty.com 17. Let V be the space of all  $n_{\times}n$  real sk symmetric matrices. Then dimension of V over ℝ is
  - (A)  $\frac{n(n+1)}{2}$  (B)  $\frac{n(n-1)}{2}$
  - (C)  $n^2 1$
- (D)  $n^2 + n$

OR

Which of the following is not true for distribution functions F and G on the real line?

- (A)  $\frac{F+G}{2}$  is a distribution function
- (B)  $\frac{F^2 + 2G^3}{2}$  is a distribution function
- (C)  $\frac{2F^3 + G^2}{3}$  is a distribution function
- (D)  $\frac{F+3G}{3}$  is a distribution function
- **18.** Let A be a  $3 \times 3$  square matrix with eigen values 2, 3, -1 and B =  $A^2 + A$ . Then det B is equal to
  - (A) 0
- (B) -6
- (C) 72
- (D) 144

OR

If  $\{X_1, X_2, \dots, X_n\}$  is a random sample from a population with pdf

$$f(x,\,\theta) = \theta x^{\theta-1}$$
 ,  $0 < x < 1,\,\theta > 0$  , what is

the distribution of  $-\sum_{i=1}^{n} \log X_i$ 

- (A) Exponential
- (B) Chi-square
- (C) Gamma
- (D) Lognormal

Paper III

K-2613

19. Which of the following mappings is a linear transformation?

(A) 
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by  $f(x, y) = (x^3, y^3)$ 

- (B)  $f: \mathbb{R}^3 \to \mathbb{R}^2$  defined by f(x,y,z)=(z,x+y)
- (C)  $f: \mathbb{R}^2 \to \mathbb{R}$  defined by f(x,y) = |x-y|
- (D)  $f: \mathbb{R}^2 \to \mathbb{R}^2$  defined by f(x, y) = (x + 1, y + 1)OR

If X has moment generating function M<sub>x</sub>, Y has moment generating function M<sub>v</sub>, and X is distributed like - Y, which of the following is true?

(A) 
$$M_v(t) = M_x(-t)$$

(B) 
$$M_{v}(t) = 1 - M_{x}(t)$$

(C) 
$$M_v(t) = 1 - M_x(-t)$$

(D) 
$$M_y(t) = tM_x(t)$$

- **20.** Let  $T: \mathbb{R}^2 \to \mathbb{R}^3$  be defined by T(x, y) = (x+y, x - y, y). Then the dimension of the range space R(T) is
  - (A) 0
  - (B) 1
  - (C) 2
  - (D) 3

OR

#### **Total Number of Pa**

Student Bounty.com The mean and variance of number defective items from a lot are given as 10 and 6 respectively. What could be the distribution of the number of defective items?

- (A) Geometric with parameter 0.6
- (B) Normal with mean 10 and variance 6
- (C) Poisson with mean 10
- (D) Binomial with parameters 25 and 0.4
- 21. If S and T are linear transformations on  $\mathbb{R}^2$  defined by

$$S(x, y) = (y, x)$$
 and  $T(x, y) = (o, x)$  then

OR

(A) 
$$S^2 = I$$
,  $T^2 = O$ 

(A) 
$$S^2 = I$$
,  $T^2 = O$  (B)  $S^2 = S$ ,  $T^2 = O$ 

(C) 
$$S^2 = S$$
,  $T^2 = I$  (D)  $S^2 = I$ ,  $T^2 = I$ 

(D) 
$$S^2 = I$$
,  $T^2 = I$ 

If r is the correlation coefficient between X and Y, what is the correlation coefficient between (1 + X) and (1 - 2Y)?

- (A) r
- (B) 2r
- (C) r
- (D) 1 2r
- **22.** Let A be a  $n \times n$  square matrix. Then which one of the following assertions is correct?
  - (A)  $\det A = 0$  implies rank A = 0
  - (B) det A = 0 if and only if rank A < n 1
  - (C)  $\det A = 0$  implies rank A = n
  - (D) det A = 0 implies rank  $A = n^2$

OR

A fair dice is rolled twice. What is the probability that the maximum in the two rolls is either 3 or 5?

- (A)  $\frac{1}{2}$
- (B)  $\frac{1}{9}$
- (C)  $\frac{2}{9}$
- (D)  $\frac{4}{9}$

K-2613

Paper III

- 23. A real symmetric matrix is positive definite if and only if all its eigen values are
  - (A) negative
- (B) imaginary
- (C) zero
- (D) positive

OR

At a birthday party 10 children throw their caps into the center of a room and after mixing up, each one selects one cap randomly. What is the expected number of children who select their own caps?

- (A) 10
- (B) 5
- (C) 2
- (D) 1
- **24.** The equation  $e^x = 1 + x + \frac{x^2}{2}$  has
  - (A) exactly one real root
  - (B) no real roots
  - (C) two real roots
  - (D) three real roots

OR

Sample mean of 16 items selected from a population having standard deviation 4 is given as 160. What is the standard error of the sample mean?

- (A) 1
- (B) 4
- (C) 10
- (D) 40
- 25. Which one of the following is a subspace of ℝ<sup>n</sup>?
  - (A)  $\{(x_1, x_2, ... x_n) | x_1 + x_2 + ... + x_n = 1\}$
  - (B)  $\{(x_1, x_2, ... x_n) | x_1 = x_2 = 0\}$
  - (C)  $\{(x_1, x_2, ... x_n) | x_1 \neq 0\}$
  - (D)  $\{(x_1, x_2, ... x_n) | 5x_1 9x_2 = 6\}$

OR

Student Bounty Com Given that 1% of a population suffers from a disease and a detection test has probability 0.99 of correct diagnosis. If a randomly chosen individual tests positive, what is the probability that the chosen individual really has the disease?

- (A) 0.01
- (B) 0.05
- (C) 0.5
- (D) 0.99
- **26.** In  $\mathbb{R}^3$ , 2 dimensional subspaces can be geometrically described as
  - (A) All planes in  $\mathbb{R}^3$
  - (B) All lines passing through (0, 0, 0)
  - (C) All planes passing through (0, 0, 0)
  - (D) The only planes x = 0, y = 0 and z = 0

OR

If U and V are independent uniform (0, 1) random variables, what is the variance

of 
$$Y = \frac{\log U}{\log U + \log (1 - V)}$$

- (A)  $\frac{1}{12}$
- (B)  $\frac{1}{6}$
- (C)  $\frac{1}{3}$
- (D)  $\frac{1}{4}$
- 27. For a square matrix A, which one of the following statements is not true?
  - (A) 0 is an eigen value of A if and only if A is non-singular
  - (B) A satisfies its characteristic equation
  - (C) A and A<sup>T</sup> have the same eigen values
  - (D) A(adj A) = (det A) I

OR

If  $V(\underline{X}) = \begin{bmatrix} 2 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix}$ , what is

 $V(X_1 - 2X_2 + X_3)$ , where

$$\underline{\mathbf{X}} = (\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3) ?$$

- (A) 6
- (B) 11
- (C) 18
- (D) 21
- **28.** Let  $f: \mathbb{R}^2 \to \mathbb{R}^2$  be defined by f(x, y) = (x+y, x+y). Then a basis and the dimension of the image of f and the dim Ker f are respectively
  - (A)  $\{(1,1)\}$ , 1 and 1
  - (B)  $\{(0, 1)\}$ , 1 and 2
  - (C)  $\{(1,0)\}$ , 2 and 2
  - (D)  $\{(1,1)\}$ , 2 and 1

OR

If  $A_{n\times n}$  is a symmetric matrix and  $\underline{X} = (X_1, ..., X_n)$  is a random vector with  $E(\underline{X})=0$  and  $V(\underline{X})=\sum$  , then what is E(X' AX) equal to?

- (A) Trace of  $A\Sigma$
- (B) | **A**Σ |
- (C) 0
- (D) 1
- 29. Let S be a non-empty set of real numbers which is bounded below. Then
  - (A) inf (-S) = Sup(+S)
  - (B)  $\inf$  (S) =  $\sup$ (–S)
  - (C) inf (S) = -Sup(S)
  - (D) inf (S) = -Sup(-S)

OR

Student Bounty.com If  $\overline{\chi}_n$  and  $S_n$  are, respectively, the same mean vector and sample dispersion matrix based on a random sample of size n from Np  $(\mu, \Sigma)$  population, which one of the following is not true?

- (A) Given  $\mu$ ,  $S_n$  is sufficient for  $\Sigma$
- (B)  $\overline{\chi}_{n}$  and  $S_{n}$  are unbiased and sufficient for  $\mu$  and  $\Sigma$
- (C) Given  $\Sigma$ ,  $\overline{\chi}_n$  is sufficient for  $\mu$
- (D)  $\overline{X}_n$  and  $S_n$ consistent are estimators.
- **30.** The bilinear transformation which maps the points Z = 0, 1, -1 into  $W = i, \infty, 0$  is

(A) 
$$i\left(\frac{Z-1}{Z+1}\right)$$

- (B)  $\frac{Z-1}{Z+1}$
- (C)  $\frac{Z+1}{7-1}$
- (D)  $-i\left(\frac{Z+1}{Z-1}\right)$

OR

If A is a symmetric matrix,  $Y \sim N_p (0, I_p)$ ,  $Y' AY \sim \chi_k^2$ , then what is the distribution of Y'  $(I_p - A)$  Y?

- (A)  $\chi_p^2$
- (B)  $\chi_k^2$
- (C)  $\chi_{pk}^2$
- (D)  $\chi_{p-k}^2$

**31.** Let  $f(z) = \frac{1+2z}{z^2+z^3}$ . Which one of the

following statements is true?

- (A) The expansion of f(z) is  $\frac{1}{3} + \frac{1}{2} - 1 + z - z^2 + z^3 + \dots$  for 0 < |z| < |z|
- (B) Residue of f(z) at z = 0 is 1
- (C) f(z) is analytic at z = 0
- (D) Residue of f(z) at z = 0 is -1OR

What is the dispersion matrix of a bivariate normal random vector (Y1, Y2) with pdf f  $(y_1, y_2)$  = constant

$$e^{-\frac{1}{2}\left\{2y_1^2+y_2^2+2y_1y_2-22y_1-14y_2+65\right\}}$$

$$(y_1, y_2) \in IR^2$$
 ?

$$(A) \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$

$$(A) \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \qquad (B) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

(C) 
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

(C) 
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 (D)  $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ 

- **32.** The equation |z-2+3i| = 5 represents in the complex plane
  - (A) A circle with centre 2 + 3i and radius 5
  - (B) A line passing through −2 + 3i and parallel to X = 5
  - (C) A line passes through 2 3i and parallel to Y = 5
  - (D) A circle with centre 2 -3i and radius 5

OR

#### **Total Number of Pa**

Student Bounty.com What is the percentage of varian explained by the first principal component of the dispersion matrix

$$\sum = \begin{pmatrix} 1 & 4 \\ 4 & 100 \end{pmatrix}$$
?

- (A) 99.2
- (B) 91.2
- (C) 89.5
- (D) 79.6
- **33.** If  $Z = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$  then  $(\overline{Z})^4$  is equal to
  - (A)  $\frac{1-i\sqrt{3}}{2}$  (B)  $\frac{1+i\sqrt{3}}{2}$
  - (C)  $\frac{-1-i\sqrt{3}}{2}$  (D)  $\frac{-1+i\sqrt{3}}{2}$

OR

What are all the values of p for which

$$\sum = \begin{pmatrix} 1 & p & p \\ p & 1 & p \\ p & p & 1 \end{pmatrix}$$
 is positive definite?

- (A)  $p < \frac{1}{2}$  (B)  $p > \frac{1}{2}$
- (C)  $p > -\frac{1}{2}$  (D)  $p < -\frac{1}{2}$
- **34.** If C is the circle |z| = 2 with counter clockwise orientation. then

$$\int\limits_{c} \! \left(2z-1\right)\! e^{\frac{Z}{Z-1}}\, dz =$$

- (A) 4ei
- (B)  $4\pi i$
- (C)  $4\pi ei$
- (D)  $4\pi e$

OR

In the Gauss-Markov model  $(Y, A \theta, \sigma^2 I)$ 

with 
$$A=\begin{pmatrix}1&1&0\\1&0&1\\1&1&0\end{pmatrix}$$
 what is a necessary

and sufficient condition for estimability of

$$I_1 \theta_1 + I_2 \theta_2 + I_3 \theta_3$$
?

(A) 
$$I_1 - I_2 = I_3$$

(B) 
$$I_2 - I_3 = I_1$$

(C) 
$$I_1 + I_2 = I_3$$

(D) 
$$I_1 + 2I_2 = I_3$$

**35.** The set is  $\{Z \in \mathbb{C}: |Z-2|+|Z-1|<3\}$  is

- (A) the interior of a disc
- (B) the interior of an ellipse
- (C) the null set Φ
- (D) the whole complex plane C

OR

For any two random variables X and Y, which of the following is true?

$$(\mathsf{A})\ \mathsf{E}\left(\mathsf{V}\left(\mathsf{X}\mid\mathsf{Y}\right)\right)=\mathsf{V}\left(\mathsf{E}\left(\mathsf{X}\mid\mathsf{Y}\right)\right)$$

(B) 
$$E(X | Y) = E(Y | X)$$

(C) 
$$E(E(X | Y)) = E(E(Y | X))$$

$$(D) \ \ V \ (E \ (X \ | \ Y)) \ \geq \ - \ E \ (V \ (X \ | \ Y))$$

**36.** The function  $W(z) = -\left(\frac{1}{z} + bz\right), -1 < b < 1$ 

maps |z| < 1 on to

- (A) a half plane
- (B) exterior of a circle
- (C) exterior of an ellipse
- (D) interior of an ellipse

OR

Student Bounty.com If  $Y_{n \times 1} \sim N_n (A\beta, \sigma^2 |_n)$  with Rank  $(A_{n \times p}) = p$  and  $\hat{\beta}$  is the least squares estimator of  $\beta$ , which of the following is not true?

- (A)  $\stackrel{\wedge}{\beta}$  is unbiased for  $\beta$
- (B)  $\hat{\beta}$  is MLE of  $\beta$
- (C)  $\hat{\beta}$  and residual sum of squares are statistically dependent
- (D)  $\hat{\beta}$  has minimum variance in the entire class of linear unbiased estimators of B
- **37.** Let  $\alpha$  be a zero of f(z) of order m and pole of  $\phi(z)$  of order n (m > n). Then for the function  $f(z) \phi(z)$ ,  $\alpha$  is
  - (A) a pole of order m + n
  - (B) a zero of order m + n
  - (C) a pole of order m n
  - (D) a zero of order m n

OR

What is the probability density function corresponding to the characteristic

function 
$$\varphi(t) = \frac{1}{1+t^2}$$
,  $t \in \mathbb{R}$  ?

(A) 
$$e^{-x}$$
,  $x > 0$ 

(B) 
$$\frac{1}{2}e^{-|x|}, x \in \mathbb{R}$$

(C) 
$$\frac{1}{\pi} \frac{1}{(1+x^2)}$$
,  $x \in \mathbb{R}$ 

(D) 
$$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, x \in \mathbb{R}$$



Student Bounty.com **Total Number of Pa** 

- **38.** Under the transformation  $\omega = \frac{1}{2}$  the image of the circle |z - 2i| = 2 is
  - (A) a circle
  - (B) a straight line
  - (C) an ellipse
  - (D) a parabola

OR

Let  $X \sim N(0, 1)$  and Y be independent of

X with P (Y = 0) =  $\frac{1}{2}$  = P (Y = 1). If

 $Z = \begin{cases} X & \text{if} \quad Y = 1, \\ -X & \text{if} \quad Y = 0, \end{cases}$  then what is the

distribution of Z?

- (A) N (0, 1)
- (B) N (0, 2)
- (C)  $N\left(0,\frac{1}{2}\right)$  (D)  $N\left(\frac{1}{2},1\right)$
- **39.** The series  $\sum_{n=0}^{\infty} \left( \frac{z^n}{n!} + \frac{n^2}{z^n} \right)$  converges for
  - (A) |z| > 1
  - (B) |z| < 1
  - (C) |z| = 1
  - (D)  $|z| \le 1$

OR

Which of the following is not a characteristic function?

- (A) 1
- (B)  $e^{it}$ ,  $t \in \mathbb{R}$
- (C)  $\frac{1}{(1-it)}$ ,  $t \in \mathbb{R}$
- (D)  $e^{-|t|}, t \in \mathbb{R}$

**40.** If C is the circle |z| = 1, then the value

the integral  $\int_{0}^{\infty} \frac{\sin^2 z}{(z-\frac{\pi}{2})^3} dz$  is

- (A)  $4\pi i$
- (B)  $3\pi i$
- (C)  $2\pi i$
- (D) πi

OR

If  $\{X_1, ..., X_n\}$  is a random sample from a population having pdf

 $f\left(x,\,\alpha,\,\beta\right)=\frac{1}{\left\lceil\,\alpha\,\,\beta^{\,\alpha}\right.}\,e^{-\frac{x}{\beta}}\,\,x^{\alpha\,-\,1},\,x>0\;\text{, which}$ of the following estimator is sufficient for  $\alpha$  when  $\beta$  is known?

- (A)  $\prod_{i=1}^{n} X_{i}$  (B)  $\sum_{i=1}^{n} X_{i}$
- (C)  $\left(\prod_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right)$  (D)  $\sum_{i=1}^{n} X_{i}^{2}$
- 41. For which value of n, primitive root modulo n does not exist?
  - (A) n = 14
- (B) n = 4
- (C) n = 7
- (D) n = 8

OR

If  $\overline{\chi}_n$  is the sample mean of a random sample of size n from uniform  $(0, \theta)$ population, which of the following is true?

- (A)  $\overline{\chi}_n$  is unbiased for  $\theta$
- (B)  $\overline{\chi}_n$  is UMVUE for  $\theta$
- (C)  $\overline{\chi}_{\text{n}}$  is a biased estimator of  $\theta$
- (D)  $\overline{\chi}_{n}$  is MVB estimator of  $\theta$

- **42.** Which one of the following statement is not true?
  - (A) There exists a field with 5 elements
  - (B) There exists a field having 16 elements
  - (C) There exists a field with 36 elements
  - (D) There exists a field having 125 elements

OR

Which of the following distributions does not possess MLR property?

- (A) Exponential
- (B) Uniform
- (C) Power function
- (D) Normal
- 43. The number of conjugacy classes in the symmetric group S<sub>5</sub> is
  - (A) 5
- B) 25
- (C) 10
- (D) 7

OR

Which of the following is correct?

- (A) If the p-value of a test is 0.16 then the test is insignificant at 10% level
- (B) If a test is significant at 5% level, then the probability of the null hypothesis being true is atleast 0.05
- (C) If a test is significant at 1% level, then the value of the test statistic must be quite large
- (D) If sample mean based on a random sample of size 1000 turns out to be 0.003, then the hypothesis that population mean is 0 should be rejected

44. Consider the following statements

Student Bounty.com Statement (i): Every

of a cyclic image

group is cyclic.

Statement (ii): Every homomorphic

of a cyclic image

group is cyclic.

Then

- (A) (i) holds and (ii) does not hold
- (B) (ii) holds and (i) does not hold
- (C) Neither (i) nor (ii) holds
- (D) Both (i) and (ii) hold

OR

If  $\{X_1, X_2, ..., X_n\}$  is a random sample from uniform  $(0, \theta)$  and  $M_n = \max \{X_1, ..., X_n\}$ , which of the following gives the shortest  $(1 - \alpha)$  level confidence interval for  $\theta$ ?

(A) 
$$(M_n, M_n+1)$$
 (B)  $(M_n, \alpha^{-\frac{1}{n}} M_n)$ 

(C) 
$$\left(M_n, \alpha^{\frac{1}{n}} M_n\right)$$
 (D)  $(\alpha M_n, M_n)$ 

(D) 
$$(\alpha M_n, M_n)$$

- **45.** The ring of all  $2 \times 2$  real matrices with respect to usual matrix addition and multiplication, is
  - (A) a commutative ring without zero divisors
  - (B) a commutative ring with zero divisors
  - (C) a non-commutative ring without zero divisors
  - (D) a non-commutative ring with zero divisors

OR

K-2613 Paper III

Given that  $\{X_1,...,X_n\}$  is a random sample from uniform  $(0, \theta)$ , which of the following is the MVUE of  $\theta$ ?

$$(A) \ \frac{X_1 + \ldots + X_n}{n}$$

(B) 
$$\frac{(n+1)}{n}$$
 min.  $\{X_1,...,X_n\}$ 

(C) 
$$\frac{(n+1)}{n}$$
 max.  $\{X_1,...,X_n\}$ 

(D) 
$$\frac{n}{(n+1)}$$
 max.  $\{X_1,...,X_n\}$ 

- **46.** The polynomial  $f(x) = x^2 + x + 4$  over  $\mathbb{Z}_{11}$ 
  - (A) is reducible
  - (B) has exactly one root in  $\mathbb{Z}_{11}$
  - (C) is irreducible
  - (D) has two roots in  $\mathbb{Z}_{11}$

OR

If  $X \sim B(1, p)$ ,  $I_{x}(p)$  is the Fisher information about p, then a consistent estimator of I<sub>v</sub>(p) is which of the following?

- (A)  $\overline{X}_n$
- (B)  $\frac{1}{\overline{X}_n}$
- (C)  $\overline{X}_n(1-\overline{X}_n)$  (D)  $\frac{1}{\overline{X}_n(1-\overline{X}_n)}$
- 47. Which one of the following statements is not true?
  - (A) The group ( $\mathbb{Z}_{\cdot}$ , +) is a cyclic group
  - (B) A cyclic group of order n has  $\varphi$  (n) number of generators
  - (C) Any group of prime order is cyclic
  - (D) Any group of order 4 is cyclic

OR

**Total Number of Pa** 

Student Bounty.com If  $\{X_1, X_2, X_3\}$  is a random sample fi  $N(\theta, 1)$ , which of the following is a sufficient statistic for A?

(A) 
$$X_1 + 2X_2 + 3X_3$$

(A) 
$$X_1 + 2X_2 + 3X_3$$
  
(B)  $2X_1 + 2X_2 + 2X_3$ 

(C) 
$$X_1 - X_2 + X_3$$
  
(D)  $X_1 + X_2 - X_3$ 

(D) 
$$X_1 + X_2 - X_3$$

- 48. Let p be a prime number and let G be a group of order p2. If G is not cyclic, then the number of elements in G of order p is
  - (A) p
  - (B)  $p^{2}$
  - (C)  $p^2 1$
  - (D) p-1

OR

If  $X \sim N(\theta, 1)$  and  $L(\theta, a) = (\theta - a)^2$  is the squared error loss, under which of the following is the decision rule  $\delta_k(x) = kx$ inadmissible?

- (A) k < 1
- (B) k > 1
- (C) 0 < k < 1
- (D)  $0 \le k < \frac{1}{2}$
- **49.** If  $\phi$  denotes the Euler's totient function, then for any positive integer n, the sum

$$\sum_{d/n} \phi(d)$$
 equals

- (A) 1
- (B) 0
- (C) n
- (D) 2n

OR

Paper III

**Total Number of Pa** 

If  $\{X_1, X_2, ..., X_n\}$  is a random sample from uniform  $\left(\theta - \frac{1}{2}, \theta + \frac{1}{2}\right)$ , what is the MLE of A?

(A) max. 
$$\{X_1, ..., X_n\}$$

(B) 
$$\frac{1}{2}$$
 (min.{X<sub>1</sub>,...,X<sub>n</sub>} + max.{X<sub>1</sub>,...,X<sub>n</sub>})

(C) min. 
$$\{X_1,...X_n\}$$

(D) 
$$\frac{X_1 + \ldots + X_n}{n}$$

- **50.** Which one of the following statements is not true?
  - (A) The ideal (X) is a prime ideal in 7 [X]
  - (B) The ideal (X) is a maximal ideal in  $\mathbb{Z}[X]$
  - (C) The ideal (X) is a maximal ideal in
  - (D) The ideal (X) is a prime ideal in  $\mathbb{C}[X]$ OR

In simple random sampling, bias of the ratio estimator  $R = \frac{\overline{Y}}{\overline{v}}$  is what ?

(A) Cov. 
$$(\overline{Y}, \overline{X})$$

(B) 
$$-\frac{\text{Cov.}(R, \overline{X})}{\text{E}(\overline{Y})}$$

(C) 
$$-\frac{\text{Cov.}(R, \overline{Y})}{E(\overline{X})}$$

(D) 
$$-\frac{\text{Cov.}(R, \overline{X})}{\text{E}(\overline{X})}$$

- Student Bounty.com 51. Which one of the following statements not true?
  - (A) The congruence equation 15 x = 6(mod 18) has 3 solutions mod 18
  - (B) The congruence equation  $12 x \equiv 5$ (mod 10) has 2 solutions mod 10
  - (C) The congruence equation 13  $x \equiv 1$ (mod 5) has a unique solution mod 5
  - (D) The congruence equation 10  $x \equiv 1$ (mod 17) has a unique solution mod 17

OR

A population was divided into groups and it was found that within group variation was less than between group variation. Which sampling procedure was used if a sample of units was selected from each group?

- (A) Cluster sampling
- (B) Systematic sampling
- (C) Probability proportional to size sampling
- (D) Stratified sampling
- **52.** Which one of the following statements is not true?
  - (A) The map  $f: (\mathring{\mathbb{R}}, X) \rightarrow (\mathring{\mathbb{R}}, X)$  given by  $f(x) = x^3$  is a group isomorphism
  - (B) The map  $g:(\hat{\mathbb{R}},X)\rightarrow(\hat{\mathbb{R}},X)$  given by  $g(x) = x^2$  is a group isomorphism
  - (C) The permutations  $\sigma = (12) (3456)$ and  $\tau$  = (13) (2456) in S $_6$  are conjugates
  - (D) Product of an even permutation and an odd permutation is an odd permutation

OR

K-2613 15 Paper III

Student Bounty.com **Total Number of Pa** 

If a sample of size n is selected from a population of size N using SRSWR, what

is 
$$E\left(\frac{1}{D}\right)$$
 where D is the number of distinct

units in the sample?

$$(A) \ \frac{N-n}{N-1}$$

(A) 
$$\frac{N-n}{N-1}$$
 (B)  $\frac{1}{N^n} \sum_{m=1}^{N} m^{m-1}$ 

(C) 
$$\frac{1}{N^n} \sum_{m=1}^{N} m^m$$
 (D)  $\frac{N^n - n^n}{N-1}$ 

(D) 
$$\frac{N^n - n^n}{N - 1}$$

### 53. Consider the ring

$$R = \mathbb{Z} \left[ \sqrt{-5} \right] = \left\{ a + b \sqrt{-5} \mid a, b \in \mathbb{Z} \right\}$$

and  $\alpha = 1 + \sqrt{-5}$  of  $\mathbb{R}$ . Then which one of the following statements is not true?

- (A) R is an integral domain
- (B) R is not a unique factorization domain
- (C)  $\alpha$  is irreducible
- (D)  $\alpha$  is prime

OR

If y is the mean of a simple random sample of size n drawn from a population of size N, then what is the ratio

$$\frac{V(y)_{SRSWOR}}{V(y)_{SRSWD}}$$
 equal to ?

(A) 
$$\frac{N-1}{N-n}$$

(B) 
$$\frac{N-n}{N-1}$$

(C) 
$$\frac{N-n}{Nn}$$

(D) 
$$\frac{N-1}{Nn}$$

**54.** 
$$\frac{\mathbb{Z}_2[X]}{(X^3 + X^2 + 1)}$$
 is

- (A) a field with 16 elements
- (B) a field with 8 elements
- (C) an infinite field
- (D) not a field

OR

If the key block in a 25 factorial experiment consists of (1), bc, de, bcde, abd, acd, abe, ace, then what are the interactions that are confounded?

- (A) ABC, ADE, BCDE
- (B) ABC, ACE, BCDE
- (C) ADE, ABCD, BCE
- (D) ACE, BCDE, ABD

**55.** Let  $F \subseteq K \subset L$  be field extensions. If F is a field with 4 elements, which of the following is a possibility?

(A) 
$$|L| = 64$$
 and  $|K| = 32$ 

(B) 
$$|L| = 16$$
 and  $|K| = 8$ 

(C) 
$$|L| = 256$$
 and  $|K| = 16$ 

(D) 
$$|L| = 128$$
 and  $|K| = 16$   
OR

In Anova for one way classified data with 3 classes and 3 observations per class, F-value is 15 and total sum of squares is 12. What is the mean square between classes?

- (A) 2
- (B) 3
- (C) 4
- (D) 5

Paper III

K-2613

Total Number of Partitional

- **56.** Which one of the following statements is true?
  - (A) Every Hausdorff space is regular
  - (B) Every regular space is normal
  - (C) Every normal space is metrizable
  - (D) Every closed subspace of a normal space is normal

OR

What are the respective interaction effects confounded in the two replications given below?

Replication I Replication II

$$\begin{pmatrix}
abc \\
bc \\
a \\
(1)
\end{pmatrix}
\begin{pmatrix}
ab \\
ac \\
b \\
c
\end{pmatrix}
\begin{pmatrix}
abc \\
ac \\
b \\
c
\end{pmatrix}
\begin{pmatrix}
ab \\
b \\
c
\end{pmatrix}$$

- (A) BC and AB
- (B) BC and AC
- (C) ABC and AB
- (D) AB and BC
- **57.** The boundary of A =  $\{(x, 0) \mid 0 \le x < 1\}$  in  $\mathbb{R}^2$  is
  - (A)  $\{(x, 0) \mid 0 < x \le 1\}$
  - (B) {(0,0), (1, 1)}
  - (C)  $\{(x, 0) \mid 0 \le x \le 1\}$
  - (D)  $\{(x, 0) \mid 0 \le x < 1\}$

OR

In a BIBD with v=b=4 and  $\lambda$  = 2, what are the values of r and k respectively?

- (A) 3 and 3
- (B) 3 and 2
- (C) 2 and 3
- (D) 2 and 2

- **58.** Let  $f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational} \end{cases}$ 
  - (A) f is continuous only at rational points
  - (B) f is continuous only at irrational points
  - (C) f is nowhere continuous
  - (D) f is continuous everywhere

OR

If  $P_{3\times3}$  is a doubly stochastic transition probability matrix of a Markov chain, then what is the stationary distribution?

- (A) (100)
- (B)  $\left(\frac{1}{3} \frac{1}{3} \frac{1}{3}\right)$
- (C)  $\left(\frac{1}{3}\frac{2}{3}0\right)$
- (D)  $\left(\frac{2}{3}\frac{1}{3}0\right)$
- **59.** Let  $\tau$  be the dictionary order topology on  $\mathbb{R} \times \mathbb{R}$  and  $\tau'$  be the product topology on  $\mathbb{R}_d \times \mathbb{R}$ , where  $\mathbb{R}_d$  denotes  $\mathbb{R}$  in the discrete topology. Then
  - (A)  $\tau = \tau'$
  - (B)  $\tau$  is strictly finer than  $\tau'$
  - (C)  $\tau'$  is strictly finer than  $\tau$
  - (D)  $\tau$  and  $\tau'$  are not comparable

OR

If  $\{N(t), t \ge 0\}$  is a Poisson process with mean value function  $m(t) = 2t, t \ge 0$ , then what is the variance of the number of events occurring by time 10?

- (A) 20
- (B) 40
- (C) 10
- (D) 05

K-2613

Paper III



- **60.** Which one of the following statements is not true?
  - (A)  $\mathbb{R}^n$  in the product topology is metrizable
  - (B)  $\mathbb{R}^{w}$  in the product topology is metrizable
  - (C)  $\mathbb{R}^{J}$  in the product topology is metrizable
  - (D)  $\mathbb{R}^{w}$  in the box topology is not metrizable

OR

If  $\{N(t), t \ge 0\}$  is a homogenous Poisson process, what is the correlation coefficient between N(s) and N(t), s < t?

- (A)  $\frac{s}{t}$
- (B)  $\sqrt{\frac{s}{t}}$
- (C)  $\sqrt{st}$
- (D) st
- **61.** Which one of the following statements is not true?
  - (A) Every interval in  $\mathbb{R}$ both connected and locally connected
  - (B) The subspace  $Y = [0, 1) \cup (1, 2]$  of R is not locally connected but connected
  - (C) The subspace Q of ℝ is neither connected nor locally connected
  - (D) The deleted comb space is connected but not locally connected

Student Bounty.com Men and women arrive in que independently according to Poisson process with respective rates  $\lambda_1$  and  $\lambda_2$ . What is the probability that the first to arrive in the queue is a woman?

- (A)  $\frac{\lambda_1}{\lambda_2}$
- (B)  $\frac{\lambda_2}{\lambda_1}$
- (C)  $\frac{\lambda_1}{\lambda_1 + \lambda_2}$  (D)  $\frac{\lambda_2}{\lambda_1 + \lambda_2}$
- 62. Which one of the following spaces is connected but not path connected?
  - (A)  $I \times I$ , where I = [0, 1] in the dictionary order topology
  - (B) The space  $Y = [0, 1) \cup (1, 2]$  of  $\mathbb{R}$
  - (C) R in the standard topology
  - (D) The subspace Q of ℝ

OR

A system consists of four identical units with independent lifetimes. The system consists of part A and part B which are connected in series and part A has 2 units connected in parallel and part B has 2 units connected in parallel. Given that the

probability of failure of a unit is  $\frac{1}{2}$ , what is the reliability of the system?

- (A)  $\frac{1}{16}$
- (B)  $\frac{9}{16}$
- (C)  $\frac{11}{32}$

OR



**63.** Let a be a complex number with |a| < 1

Then 
$$\int\limits_{|z|=1} \frac{\left|dz\right|}{\left|z-a\right|^{2}} =$$

- (A)  $\frac{2\pi}{1+|a|^2}$  (B)  $\frac{2\pi}{|a|^2}$
- (C)  $\frac{2\pi}{1-|\mathbf{a}|^2}$  (D)  $\frac{\pi}{1-|\mathbf{a}|^2}$

OR

Lifetimes of two components connected in parallel are standard exponential. What is the expected lifetime of the system?

- (A)  $\frac{3}{2}$
- (B) 1
- (C)  $\frac{1}{2}$
- (D) 2

$$\mathbf{64.} \quad \int_{0}^{2\pi} e^{e^{i\theta}} \ d\theta =$$

- (A)  $2\pi$
- (B)  $2\pi i$
- (C) πi
- (D) π

OR

If 
$$P(X_n = e^n) = \frac{1}{n} = 1 - P(X_n = 0)$$
,  $n \ge 1$ ,

which of the following is true?

- (A)  $X_n \rightarrow 0$  in  $r^{th}$  mean
- (B)  $X_n \rightarrow 0$  a.s.
- (C) X<sub>n</sub> does not converge in probability
- (D)  $X_n \rightarrow 0$  probability

**Total Number of Pa** 

Student Bounty.com **65.** Which one of transformations reduces the differential

equation 
$$\frac{dz}{dx} + \frac{z}{x} \log z = \frac{z}{x^2} (\log z)^2$$
 into

the form 
$$\frac{du}{dx} + P(x)u = Q(x)$$
?

- (A)  $u = \log z$
- (B)  $u = \frac{1}{\log z}$
- (C)  $u = e^z$
- (D)  $u = (\log z)^2$ OR

Which of the following is not correct?

- (A)  $X_n \to X$  a.s.  $\Rightarrow X_n \xrightarrow{p} X$
- (B)  $X_n \xrightarrow{p} X \text{ and } \{X_n, n \ge 1\}$  $monotone \Rightarrow X_n \rightarrow X a.s.$
- (C)  $X_n \xrightarrow{p} X \Rightarrow E(X_n X)^2 \rightarrow 0$
- (D)  $\chi_n \xrightarrow{p} \chi$  and g(.) real valued and continuous  $\Rightarrow g(X_p) \xrightarrow{p} g(X)$

**66.** The initial value problem

$$x(1+x)\frac{dy}{dx} = (2x+1)y; \ y(x_0) = y_0$$
 has

unique solution if

- (A)  $x_0 = y_0 = 0$
- (B)  $x_0 = -1 y_0 = 1$ (C)  $x_0 = 0 y_0 = 1$
- (D)  $x_0 = 2 y_0 = 1$



Which of the following is not true, given that  $\{F_n, n \ge 1\}$  is a sequence of dfs, F is a df and \_\_\_w denotes weak convergence?

- (A)  $F_n \xrightarrow{W} F$  and F continuous  $\Rightarrow \sup_{x \in \mathbb{R}} F_n(x) \to \sup_{x \in \mathbb{R}} F(x)$ , as  $n \to \infty$
- (B)  $F_n \xrightarrow{w} F$  and F continuous  $\Rightarrow \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0 \text{ as } n \to \infty$
- (C)  $F_n(x) \rightarrow F(x)$  as  $n \rightarrow \infty$  for all  $x \in \mathbb{R} \Rightarrow F_n \xrightarrow{w} F$
- (D)  $F_n \xrightarrow{w} F \Rightarrow \int_{0}^{b} g dF_n \rightarrow \int_{0}^{b} g dF$  for all continuity points a < b of F and continuous functions g on ℝ
- 67. The particular integral of the differential

equation where 
$$D = \frac{\partial}{\partial x}$$
,  $D' = \frac{\partial}{\partial y}$   
 $(D - D' - 1) (D - D' - 2) u = e^{2x - y} + x is$ 

(A) 
$$\frac{1}{2}e^{2x-y} + \frac{1}{2}\left(x + \frac{1}{2}\right)$$

(B) 
$$\frac{1}{2}e^{2x-y} + \frac{1}{2}\left(x^2 + \frac{1}{2}\right)$$

(C) 
$$\frac{1}{2}e^{2x-y} + \frac{1}{2}(x+\frac{3}{2})$$

(D) 
$$e^{2x-y} + x + \frac{3}{2}$$

#### **Total Number of Pa**

Student Bounty.com What is the mean time spent by a custon in a stable M/M/1 queueing system with arrival rate  $\lambda$  and service rate  $\mu$  ?

(A) 
$$\frac{1}{\mu - \lambda}$$

(B) 
$$\frac{\lambda}{\mu - \lambda}$$

(C) 
$$\frac{\lambda}{\mu}$$

(D) 
$$\frac{\lambda}{\mu(\mu-\lambda)}$$

**68.** The solution u(x, t) of the Dirichlet problem

$$u_t = \alpha u_{xx}, \ 0 \le x \le I, \ 0 \le t \le T$$

$$u(x, 0) = f(x), 0 \le x \le I$$

$$u(0, t) = g(t), 0 \le t \le T$$

u(l, t) = h(t) depends on

- (A) x and t
- (B) f(x) and g(t)
- (C) f(x), g(t) and h(t) (D)  $\alpha$  only

OR

If X(t) is the number of customers in an M/M/1 queueing system with arrival rate  $\lambda > 0$  and service rate  $\mu > 0$ , then what is the process  $\{X(t), t \ge 0\}$ ?

- (A) Markov process
- (B) Poisson process with rate  $\lambda \mu$
- (C) Birth process with rate  $\lambda \mu$
- (D) Birth and death process with birth rate  $\frac{1}{\lambda}$  and death rate  $\frac{1}{11}$
- **69.** The general solution of  $\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0$  is

of the form

(A) 
$$\theta = c f (x + iy) + g (iy)$$

(B) 
$$\theta = f(x + y) + g(x - y)$$

(C) 
$$\theta = f(x + iy) + g(x - iy)$$

(D) 
$$\theta = g(x + iy) + f(ix)$$

OR



In a Markov chain, what is a sufficient condition for existence of  $\lim p_{i}^{(n)}$ ?

- (A) All states communicate
- (B) The chain is null recurrent
- (C) All states communicate and the chain is positive recurrent
- (D) The chain is positive recurrent
- **70.** In Newtons cotes formula, if f(x) is interpolated at equally spaced nodes by a polynomial of degree 3, then it represents
  - (A) Trapezoidal rule
  - (B) Simpson 1/3 rule
  - (C) Simpson Three Eighth rule
  - (D) Booles rule

OR

In a homogeneous Poisson process, if S<sub>n</sub> denotes the time of occurrence of n<sup>th</sup> event, n = 1,2,..., then, given  $S_n = t$ , what is  $(S_1,...,S_{n-1})$  distributed as ?

- (A) Multivariate normal
- (B) Multivariate exponential
- (C) A set of (n-1) independent Poisson random variables
- (D) A set of (n-1) independent uniform random variables over (0, t)

Student Bounty Com 71. Which of the following states that "if I is three-times differentiable and f', f" are not zero at a solution S of f(x) = 0 then  $x_0$ sufficiently close to S"?

- (A) First order Newton's method
- (B) Second order Newton's method
- (C) Third order Newton's method
- (D) Fourth order Newton's method OR

Which of the following is not a hazard function?

- (A) t, t > 0
- (B)  $\ln t, t > 1$
- (C)  $\ln t, t > 1$
- (D)  $t^2$ , t > 0
- **72.** Consider the following statements:
  - i) The convergence rate of secant method is 1.61
  - ii) Convergence of Regula-falsi method is linear
  - iii) Bisection method is based upon the repeated application of intermediate theorem

Which of the following is true?

- (A) only (i) and (ii) are true
- (B) only (i) and (iii) are true
- (C) only (ii) and (iii) are true
- (D) (i), (ii) and (iii) are all true

OR

K-2613 Paper III

With reference to a BIBD, which of the following need not be true?

- (A) BIBD is orthogonal
- (B) BIBD is connected
- (C) BIBD is variance balanced
- (D) BIBD is binary
- **73.** Consider a holonomic dynamical system with 3 degrees of freedom. The Hamilton's Cannonical equations of motion for the dynamical system constitutes
  - (A) 6 first order differential equations
  - (B) 6 second order differential equations
  - (C) 3 second order differential equations
  - (D) 3 first order differential equations OR

In a Gauss-Markov model the rank of the design matrix  $A_{8\times5}$  is 4. What is the dimension of the estimation space of this model?

- (A) 4
- (B) 5
- (C) 16
- (D) 20
- 74. Consider the integral equation

 $y(x) = f(x) + \lambda \int_{0}^{b} K(x, t) y(t) dt$ . Then which of the following K(x, t) is not degenerate Kernel?

- (A)  $K(x, t) = \cos(x t)$
- (B)  $K(x, t) = \sin xt$
- (C)  $K(x, t) = e^{x-t}$
- (D)  $K(x, t) = e^{-(x-t)}$

OR

Student Bounty Com If X and Y are independent exponen random variables ith respective means

$$\frac{1}{\lambda_1}$$
 and  $\frac{1}{\lambda_2}$ , what is P(X < Y) ?

(A) 
$$\frac{\lambda_1}{\lambda_1 + \lambda_2}$$
 (B)  $\frac{\lambda_1}{\lambda_2}$ 

(B) 
$$\frac{\lambda_1}{\lambda_2}$$

(C) 
$$\frac{\lambda_2}{\lambda_1}$$

(C) 
$$\frac{\lambda_2}{\lambda_1}$$
 (D)  $\frac{\lambda_2}{\lambda_1 + \lambda_2}$ 

75. Let the curve C be the external of the

functional  $I[y(x)] = \int_{x^1}^{x^2} F(x, y, y') dx$  with suitable boundary conditions. Then the Legendre condition for testing for a weak maximum is

- (A)  $F_{V'V'} < 0$  on C
- (B)  $F_{V'V'} > 0$  on C
- (C)  $F_{Y'Y'}$  is constant on C
- (D)  $F_{Y'Y'}$  should be identically zero on C OR

What is the MLF of the median of a lifetime random variable following an exponential distribution with mean  $\frac{1}{\lambda}$ 

based on the sample mean  $\overline{X}_n$ ?

- (A)  $\overline{X}_n$
- (B)  $\frac{1}{\overline{X}_n}$
- (C)  $\overline{X}_n .log 2$  (D)  $\frac{log 2}{\overline{X}_n}$



ಚಿತ್ತು ಬರಹಕ್ಕಾಗಿ ಸ್ಥಳ Space for Rough Work



ಚಿತ್ತು ಬರಹಕ್ಕಾಗಿ ಸ್ಥಳ Space for Rough Work