Ma

KEY STAGE

Mathematics test

Paper 1 Calculator not allowed

First name	
Last name	
School	

Remember

- The test is 1 hour long.
- You **must not** use a calculator for any question in this test.
- You will need: pen, pencil, rubber and a ruler.
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker's use only

TOTAL MARKS

Instructions

Answers

This means write down your answer or show your working

and write down your answer.

Calculators

You **must not** use a calculator to answer any question in this test.

1 mark

1. The table shows the approximate populations of five different places.

Place	Approximate population	
London	7 000 000	
Sheffield	700 000	
Harrogate	70 000	
Ash Vale	7 000	
Binbrook	700	

(a) Which of the places has a population of about **seventy thousand**?

J

(b) Use the table to complete these sentences.

2. Here are the rules for a number grid.

Use the rules to write the missing numbers in these number grids.

3. The lengths of babies are measured at different ages.

The graph shows the longest and shortest a baby boy is likely to be.

(a) Write the missing numbers below.

A baby boy is **8 weeks old**.

The **longest** he is likely to be is about _____ cm.

The **shortest** he is likely to be is about _____ cm.

(b) A **34 week** old baby boy is **72 cm** long.

Put a cross on the graph to show this information.

1 mark

1 mark

4. Here are six number cards.

(a) Choose two of these six cards to make a fraction that is equivalent to $\frac{1}{3}$

(b) Choose two of these six cards to make a fraction that is greater than $\frac{1}{2}$ but less than 1

1 mark

5. The shape below is a regular pentagon.

All five sides are exactly the same length.

Measure accurately one of the sides, then work out the **perimeter** of the pentagon.

1 mark

1 mark

1 mark

Perimeter =

cm

1 mark

1 mark

1 mark

6. (a) A three-digit number is a multiple of 4

What could the number be?

Give an example.

Now give a **different** example.

(b) A two-digit number is a factor of 100

What could the number be? Give an example.

Now give a **different** example.

Ŋ

7. (a) Write the answer to this calculation.

(b) Now write a number in each box to make this calculation correct.The three numbers must be the **same**.

8. Sam says:

Is Sam correct?

Ø		Yes	
---	--	-----	--

No

Explain your answer.

When x = 8, what is the value of 5x? 9. (a) Tick (\checkmark) the correct box below. 40 None of these 5 13 58 1 mark (b) When x = 8, what is the value of 3x - x? Tick (\checkmark) the correct box below. None of these 3 16 30 0 1 mark (c) When x = 8, what is the value of x^2 ? Tick (\checkmark) the correct box below. 16 None of these 8 10 64 1 mark

x = 8

10. Lisa uses a grid to multiply 23 by 15

×	20	3
10	200	30
5	100	15

200 + 100 + 30 + 15 = 345

Answer: 345

Now Lisa multiplies two different numbers.

Complete the grid, then give the answer below.

×		40	3
30			
	600		18

Answer:	
	 3 marks

11. Fred has a bag of sweets.

He is going to take a sweet from the bag at random.

(a) What is the **probability** that Fred will get a **black** sweet?

(b) Write the missing **colour** in the sentence below.

The probability that Fred will get a _____ sweet is $\frac{1}{4}$

¢,

1 mark

2 marks

12. Write a number in each box to make the calculations correct.

13. A rectangle has an **area** of **24 cm²**

How long could the sides of the rectangle be? Give three **different** examples.

2 marks

1 mark

14. (a) Write the missing numbers.

50% of 80 = _____ 5% of 80 = _____ 1% of 80 = _____

(b) Work out 56% of 80

You can use part (a) to help you.

1 mark

1 mark

15. Look at this equation.

y = 2x + 10

(a) When x = 4, what is the value of *y*?

(b) When x = -4, what is the value of *y*?

(c) Which equation below gives the same value of *y* for both *x* = 4 and *x* = -4?
Put a ring round the correct equation.

$$y = 2x$$
 $y = 2 + x$ $y = x^2$ $y = \frac{x}{2}$ $\frac{1}{1 \text{ mark}}$

-

2 marks

16. The diagram shows four different sized barrels.

Write the missing fractions **as simply as possible**.

The first one is done for you.

Barrel C holds	<u>1</u> 2	of the amount barrel B holds.
Barrel D holds		of the amount barrel B holds.
Barrel C holds		of the amount barrel A holds.
Barrel B holds		of the amount barrel A holds.

17. The line on the graph below represents a speed of 60 km/hour.

(a) Draw a line on the graph to represent a speed of 30 km/hour.Label the line by writing 30 km/hour.

1 mark

(b) Now draw a line on the graph to represent a speed of 120 km/hour.Label the line by writing 120 km/hour.

18. (a) In this design, the ratio of grey to black is 3:1

What percentage of the design is black?

%

(b) In this design, **60%** is **grey** and the rest is black.

What is the ratio of **grey to black**? Write your ratio in its simplest form.

:

2 marks

- **19.** In a bag there are only red, blue and green counters.
 - (a) I am going to take a counter out of the bag at random.Complete the table below.

Colour of counters	Number of counters	Probability
Red	6	
Blue		$\frac{1}{5}$
Green	6	

(b) Before I take a counter out of the bag, I put one extra blue counter into the bag.
 What effect does this have on the probability that I will take a red counter?
 Tick (✓) the correct box.

The probability has decreased.

The probability has stayed the same.

It is impossible to tell.

1 mark

2 marks

20. The diagram shows three straight lines.

Work out the sizes of angles a, b and c

Give reasons for your answers.

(c) Complete the sentence below by writing a **fraction**.

 $\frac{1}{9}$ is half of

22. Solve this equation.

$$2(2n + 5) = 12$$

n = _____ 2 marks

1 mark

23. Kevin is working out the area of a circle with radius 4 He writes: Area = $\pi \times 8$

Explain why Kevin's working is **wrong**.

24. Write the missing numbers in these fraction sums.

25. Look at the cube.

The area of a **face** of the cube is $9x^2$

Write an expression for the **total surface area** of the cube.

Write your answer as simply as possible.

END OF TEST