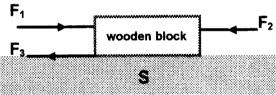
JUNIOR LYCEUMS ANNUAL EXAMINATIONS 2000 Educational Assessment Unit - Education Division

FORM 3	PHYS	ICS	TIME: 1 hr 30 min
NAME:			CLASS:
Answer ALL question All working must be s	•		-
You may find some	of these formulae	useful.	
acceleration due to g	ravity g = 10 m/s²		поления
area of triangle = base	x height area o	of trapezium = $\frac{h}{2}$	(sum of parallel sides)
v = <u>s</u> v = u +	at $s = \frac{at^2}{2}$	W = mg	density = <u>mass</u> volume
work done = Fs	PE = mgh	P = <u>work dor</u> time	ne KE = <u>mv²</u> 2
moment of a force =	Force x perpendi	cular distance	метерити
magnification = <u>he</u> he	ight of image = ight of object		
refractive index = <u>s</u>	<u>ine (angle in air)</u> ine (angle in mediu	ım)	
sine (critical angle) =	refractive index		
frequency = <u>number</u> t	of waves ime		т
$V = f\lambda$			

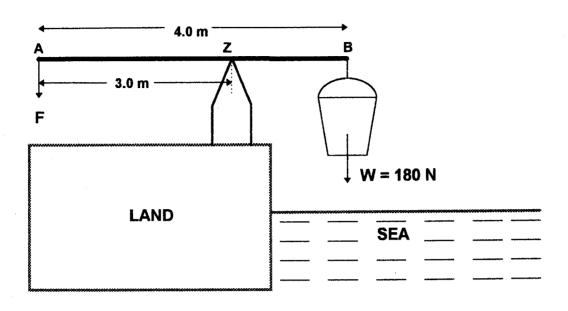
Section A. Answer All Questions. This Section carries 55 marks.

1. Complete the following Table:


No:	Physical Quantity	S.I. symbol	Value	Value in S.I. Units
a.	distance		3.5 km	3500 m
b.	time	t	2.5 minutes	
C.	energy	E	4 kJ	
d.	mass		1500 g	

[1]
[1]
[1]
[2]

page 2.,


2. a .		i. State ONE difference between vectors and scalars.		
				F41
		ii.	An example of a vector is	ניו
		iii.	An example of a scalar is	[1]

b. The diagram below shows the **three** forces acting on a wooden block while being pushed along a **rough** surface S. Force F₁ is the force pushing the wooden block forwards.

i.	F ₂ is the	[1]
ii.	F ₃ is the force of between the wooden block and the rough surface S.	[1]
iii.	Calculate the size of the resultant force F acting on the wooden block given that F ₃ is 5 N, F ₂ is 3 N and the pushing force F ₁ is 12 N.	[3]
iv.	Which force will not exist if the surface S is a smooth surface?.	[2]

3. The diagram shows a device for lifting water from the sea. The weight of the rod AB can be ignored.

- a. The perpendicular distance between the bucket and the pivot **Z** is m.
- b. Calculate the **size** of the moment of the bucket about the pivot **Z**. [2]
- c. The direction of rotation caused by the bucket about the turning point **[2] Z** is
- d. Calculate the downward force F to balance the bucket.

[4]

4. a. A driver of a car has a thinking time of 0.7 s, that is, there is a delay of 0.7 s between the driver deciding to stop the car and pressing the brake pedal. If the car is travelling at 20 m/s, calculate the distance covered by the car [2] during the thinking time. b. Once the brake pedal has been pressed, the car decelerates uniformly and stops in 3.0 s. i. Draw on the figure below, a graph, to show how the speed of the car [3] changes during the last 3.0 s. speed / m/s 30 25 20 15 10 5 0 time / s 2 3 5 0 1 ii. From your graph, find the distance covered by the car during braking. [3] iii. Calculate the total distance covered by the car, between the driver [2] deciding to stop the car and the car finally coming to rest.

	m is 6250 J.	
a.	What is the work input? J.	
b.	Calculate the work done [or work output] by the crane.	
C.	Calculate the efficiency of the crane.	·
d.	How much energy is wasted?	
е.	What happens to the wasted energy?	v.
a	. The following represent ray diagrams	
	Figure A Figure B Figure C Figure D Figure E	
	 i. Figure represents a parallel beam of light. ii. Figure B represents a of light. iii. Figure represents a convergent beam of light. iv. Figure represents a divergent beam of light. v. Figure represents a source of light. 	
b.	i. A magnified image is an image than the object. ii. A converging lens is at the than at the edges iii. A real image produced by a converging lens is always	3.
	iv. The image of an object placed on the focus of a converging lens is formed at	

Section B. Answer All Questions. This Section carries 45 marks.

• •	s question is about the Kinetic Theory and Brownian Motion.
ì .	According to the kinetic theory of matter:
	i. Matter exists in three states:,, and
	ii. All matter is made up of
	iii. The particles of a gas at room temperature possessenerg
	iv. The motion of the particles in a gas is described as
b.	An experiment was set up to show Brownian M otion in air using a smoke cell.
	i. Draw a labelled diagram of the experimental set-up.
	ii. Explain why it is possible to see individual smoke particles but not ai
	particles.
	particles.
	•

page 6..

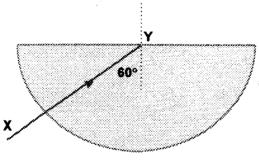
2. This question is about the refractive index and critical angle of a transfer semicircular transparent plastic block.

The following table of results is obtained from an experiment to find the refractive index and critical angle of a semicircular plastic block.

angle in plastic /°	0	10	20	30	40	45	50
angle in air /°	0	13	27	41	57	68	90

a.	Plot a graph, on the graph paper provided, of angle in plastic [x-axi	s]
	against angle in air [y-axis]. Draw the BEST SMOOTH CURVE.	

b. From your graph, find the angle in air when the angle in plastic is 35°.


977.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

c. From your graph, find the angle in plastic when the angle in air is 25°.	[1]
---	-----

d.	What is the critical angle of this kind of plastic?	[3]

e.	Calculate the refractive index of this kind of plastic.	Eggs Factor St.	[2]

[3] f. Complete the figure below to show the path of the ray of light XY incident on the semicircular plastic block used in the experiment. Explain your answer.

		······································		
	*************	************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1. 1.	•	en e		
***************************************		************************************	*******************************	*******
		***************************************		22227

page /..

[5]

[1]

2	Thie	augstion i	9	about	water waves.
ა.	Inis	question	3	about	water waves.

Two students set up a ripple tank in the laboratory to study the properties of waves.

W dc	aves are set up in the ripple tank. A small floating object goes up and own 5 times per second. The wave crests produced are 10 cm apart.
i.	The frequency of the wave = Hz
ii.	The wavelength of the wave = m
iii.	Calculate the velocity of the wave.
	Explain how you would produce a straight water wave.
•	
i. ii.	Explain how you would produce a straight water wave.