SECONDARY SCHOOL ANNUAL EXAMINATIONS 2008

FORM 5	MATHEMATICS – SCHEME A (Non-Calculator Paper)	TIME: 20 minutes
Name:		Class:
	Mark	

INSTRUCTIONS TO CANDIDATES

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- Calculators, protractors and other mathematical instruments are not allowed.
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Working
1	Write down the value of $1 - \frac{2}{3} \times \frac{3}{4}$. Answer:	
2	Write thirty thousand and three in figures. Answer:	
3	One of the angles of an isosceles triangle is 100°. What is the size of each of the other angles? Answer:	
4	Write down the largest prime number less than 40.	
	Answer:	
5	A television programme starts at ten minutes to eight. It lasts twenty-five minutes. At what time does the programme finish?	
	Answer:	
6	The sum of all the factors of 6 is: A. 5 B. 6 C. 11 D. 12 Answer:	
7	How many minutes are there in a whole day?	
	Answer:	
8	Subtract 25 cm from 2 metres, giving your answer in centimetres .	
	Answer :cm	

No.	Question	Space for Working
9	In an examination 60% of the maximum mark is required for a pass. The maximum mark is 200. What is the pass mark ? Answer:	
10	A committee is made up of four men and a number of women. A chairperson is selected at random. The probability that the chairperson is a man is $\frac{2}{3}$. How many women are there in the committee? Answer:	
11	A car was bought for €10 000. After two years it was sold for €7 000. What is the percentage loss ?	
	Answer:	
12	Which one of the following is not equal to $\frac{1}{2}ab$? A. $\frac{ab}{2}$ B. $a \times \frac{b}{2}$ C. $b \times \frac{a}{2}$ D. $\frac{1}{2a} \times b$	
	Answer:	
13	Simplify: $\frac{6x^2}{5} \times \frac{15}{12xy}$ Answer:	
14	Given that $x = pr + q$, which one of the following is true?	
	A. $r = \frac{x - q}{p}$ B. $r = x - q - p$	
	$\mathbf{C.} \ \ r = \frac{x}{p+q} \qquad \qquad \mathbf{D.} \ \ r = \frac{x-p}{q}$	
	Answer:	

No.	Question	Space for Working
15	The value of $\left(\frac{1}{3}\right)^{-2}$ is A. $\frac{1}{9}$ B. $\frac{1}{6}$ C. 6 D. 9 Answer:	
16	The straight line $y = 2x - 3$ passes through one of the following points. Which one? A. $(1, 1)$ B. $(2, 1)$ C. $(2, -1)$ D. $(1, 2)$ Answer:	
17	The bearing of B from A is 040°. What is the bearing of A from B ?	
18	Which one of the following is true ? A. $x + y = 180^{\circ}$ B. $x + y = 90^{\circ}$ C. $x + 2y = 180^{\circ}$ D. $x + 2y = 90^{\circ}$ Answer:	
19	Given that AB = \sqrt{x} cm, find the value of x . 7 cm 5 cm	
20	Answer: <i>x</i> = Write the missing number : 2 , 100% , 0.5 ,	

SECONDARY SCHOOL ANNUAL EXAMINATIONS 2008

A

Educational Assessment Unit – Education Division

FOF	RM 5	5		MA	ГНЕ	MA	ГICS	S - S	CHI	EME	A (1	Main	Paper	·) TIM	E: 1h 40min
1	2	3	4	5	6	7	8	9	10	11	12	13	Total Main	Non Calculator	GLOBAL MARK
					D	O N	OT V	VRIT	Γ Ε Α	BOV	E TI	HIS L	INE		
Nam	e:													Class:	
C	ALC	ULA'	ΓORS	S ARI	E ALI					NECE QUE			ORKIN	NG MUST BI	E SHOWN.
	56% Two (a)	% of a o-thin Wha	these rds or it pe r		ents boys age (are g pass of pu	irls. ed th pils a	ie ma atten	athen ding	natication the s	s exa choo exam	ol are ninati		, (b)	(3 marks)
2.	swi	mmi	ng po	show ool. t the								41.2m≯		15 m	—————————————————————————————————————
Area = m ² The length of the pool is 12 metres. (b) Work out the capacity , in litres, of the pool. (1 m ³ = 1000 litres)															
												Cap	oacity =	=	litres (4 marks)

- The volume of a cone is given by the formula $V = \frac{\pi r^2 h}{3}$. 3.
 - (a) Make *r* the subject of the formula.

(b) The volume of a cone is 124 cm³ and its height is 6.7 cm. Work out the value of r, correct to 1 decimal place.

(4 marks)

A man stands 20 metres away from a tower. He 4. observes the angles of elevation of the bottom and top of a flagstaff standing on the tower as 60° and 62° respectively.

20 m

Work out, correct to 2 decimal places:

- (a) the **height** of the **tower**,
- (b) the **height** of the **flagstaff**.

Answer: (a) _____ m, (b) ____ m

Name:	Class:	A
	square and ABP is an equilateral triangle at triangles ADP and BCP are congruent	
(b) Write do	own the size of ∠DPC .	
		∠DPC =(5 mark
. The LOGO	statement draws a regular polygon .	
	PD REPEAT 6 [FD 50 RT	60]
(a) Fill in:		
(i) T	he polygon is a regular	
(ii) T	he perimeter of this polygon is	turtle steps.
(iii) T	he order of rotational symmetry of the p	oolygon is
	te the LOGO statement that will draw a reter of 480 turtle steps.	egular octagon having a
	PD REPEAT [FD F	RT]

7. (a) Write down an **inequality** to describe the range of numbers shown on each of these number lines. **NOTE:** (i) is worked out for you.

Answer: $x \ge -1$

Answer:

Answer:

(b) Solve the following inequality and illustrate your solution on the number line.

$$2 - 3x \ge 6 - x$$

(5 marks)

8. (a) The table on the right shows a set of matching *p* and *q* values where *p* is **directly** proportional to the **cube** of *q*.

p	85.75	182.25	549.25
q	3.5	4. 5	6.5

Use the values given to find a **formula** for p in terms of q. Show all your working.

Answer:____

Name:	Class:

(b) The table on the right shows a set of matching *s* and *t* values where *s* is **inversely** proportional to *t*.

S	$\frac{1}{4}$	1	5
t	4	1	

(i) Use the values given to find a **formula** for *s* in terms of *t*.

(ii) Hence or otherwise write down the missing value in the table.

Answer:_____

Answer:_____

(c) The **range** within which a number lies is shown on the number line. To what accuracy, in **significant figures**, is the number given?

Answer:

(d) Use the number line given to illustrate the **range** (lower and upper bounds) within which **730** lies, when given correct to **the nearest ten**.

9. (a) P, Q, R and S are four points on the circumference of the circle shown.

APB is a **tangent** to the circle at P.

Angle PQR = 127° and angle APQ = 24°.

Show all your working and give reasons for your answers.

Find $\angle QSR$.

(b) The diagram shows two circles **touching** at P.

APB and CPD are straight lines such that A and C lie on one circle and B and D lie on the other circle.

TPS is a **tangent** to **both** circles at P.

$$\angle APS = x^{\circ}$$
.

Prove, **giving reasons**, that AC is **parallel** to BD.

(9 marks)

10. Two sisters, Maria and Carmen, are both sitting for their Mathematics SEC examination for the first time. Table 1 shows the probability that they will pass the exam at the **May** session.

	Probability of passing at May session
Maria	0.6
Carmen	0.7

Table 1

(a) Work out the probability that **both** Maria **and** Carmen will pass the exam at the **May** session.

A .	
Answer:	

(b) Work out the probability that **only one** of the sisters will pass the exam at the **May** session.

Answer	,• •

(c) Work out the probability that **at least one** of the sisters will pass the exam at the **May** session.

Answer:	

Table 2 shows the probability that they will pass the exam at the September session, if they fail at the May session.

	Probability of passing at September session, if they fail at May session
Maria	0.8
Carmen	0.7

Table 2

(d) Work out the probability that **Carmen** will pass the exam **either** at the **May** session **or** at the **September** session.

Answer:_			
	(8 marks)		

11. Patrick drives his car to work. He increases his velocity at a constant rate for the first 20 seconds (AB). He then travels at a steady velocity (BC). He sees a speed camera sign which also shows a speed limit, so he slows down at a

constant rate until he reaches a speed which is the **same** as the speed limit (CD).

He then continues driving at a steady velocity again (DE).

The diagram below shows Patrick's journey with corresponding line segments AB, BC, CD and DE.

(a) Write down the **maximum** velocity during the journey, in **m/s**.

Answer: m/s

(b) Work out how **far** Patrick travels while travelling at the maximum velocity. Give your answer in **metres**.

Answer: m

(c) What was the **speed limit** shown on the speed camera sign? Give your answer in **km/h** and show all your working.

Answer: _____ km/h

(d) Work out the **gradient** of line segment AB. **Explain** what the gradient of AB represents.

Answer: gradient =

12. A group of **boys** took part in a sack race organised during a village fun day. The box plot **A** shows the distribution of the times in seconds taken by the **boys** to complete the race.

- (a) What **percentage** of the **boys** took **more** than 40 seconds to complete the race?
- (b) A different race for **girls** was also organised. Below is some information about the distribution of the times in seconds taken by the girls to complete the race.

A quarter of the girls took 32 seconds or less, the fastest taking 26 seconds.

A quarter of the girls took 43 seconds or more, the slowest taking 50 seconds.

The **median** time was 42 seconds.

Complete box plot **B** to show this information.

- (c) Which **one** of the following statements is **true**? **Explain** your answer by **referring** to the **box plots**.
 - (i) "The boys' times are generally faster than the girls' ".
 - (ii) "The girls' times are generally faster than the boys' ".
- (d) The **central half** of the data shows that:

"the spread of the times for boys and girls are almost the same".

- (i) What **feature** of the **box plots** shows that this statement is **true**?
- (ii) What is the **central half** of the data called?

A) Upper quartile

B) Interquartile range

C) Median

D) Range

13. The table shows values of x and y for $y = \frac{12}{x}$.

The values of x and y have been used to draw the graph of $y = \frac{12}{x}$

x	-6	-4	-3	-2	-1.5	-1	-0.75	0
у	-2	-3	-4	-6	-8	-12	-16	not defined

(a) On the same axes draw the graph of $y = \frac{12}{x}$ for values of x from 0.75 to 6.

for values of x from -6 to -0.75.

- (b) On the same axes draw the graph of $y = x^2$ for values of x from -4 to 4.
- (c) **Explain how** you can use **your graphs** to find an **estimate** for the cube root of 12.

All working must be shown.