JUNIOR LYCEUM ANNUAL EXAMINATIONS 2008

DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Educational Assessment Unit

FOR	RM l	IV .	CHEMISTRY								TIME: 1h 30min						
Name:						Class:						s:					
Useful Data: A copy of the Periodic Table is printed below. Relative atomic mass may be taken as: $Pb = 207$, $N = 14$, $O = 16$ One mole of any gas occupies 22.4 dm ³ at standard temperature and pressure																	
							PER	IODI	C TA	BLE							
1	2											3	4	5	6	7	0
							1 H 1										4 He 2
Li 3	9 Be 4					·						11 B 5	12 C 6	14 N 7	16 O 8	19 F 9	Ne 10
Na 11	24 Mg 12											27 Al 13	28 Si 14	31 P 15	32 S 16	35.5 Cl 17	40 Ar 18
39 K 19	Ca 20	45 Sc 21	48 Ti 22	51 V 23	52 Cr 24	55 Mn 25	56 Fe 26	59 Co 27	59 Ni 28	63.5 Cu 29	65 Zn 30	70 Ga 31	73 Ge 32	75 As 33	79 Se 34	80 Br 35	Kr 36
85 Rb 37	88 Sr 38	89 Y 39	91 Zr 40	93 Nb 41	96 Mo 42	99 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 Tl 81	207 Pb 82	209 Bi 83	210 Po 84	210 At 85	222 Rn 86
Key $\begin{bmatrix} a \\ \mathbf{X} \\ b \end{bmatrix}$ relative atomic mass symbol atomic number																	
Marks Grid [For Examiners use only]																	
Question N°.					Section					Section F							
		1	2		3	4	5		6	7	8		9				
Max Mark		10	10		10	10	15		5	20	20		20				

85% of Theory Paper	15% Practical	100% Final Score

Actual Mark Theory Total

1.	sim	vidium is in Group 1 of the Periodic Table below potassium. Use your knowledge of the ilarity and trend in reactivity of the Group 1 metals to answer the following questions ut Rubidium and its compounds.							
	a)	Write	te the formula for (i) the rubidium ion						
	,		(ii) rubidium sulfate	(2 marks)					
	b)		lict one physical property you would expect rubidium to show, that is paup 1 metals.	articular to					
				_ (1 mark)					
	c)	Whic	ch process would be necessary to extract rubidium from molten rubidiur	m chloride? _ (1 mark)					
	d)	(i)	Would you expect rubidium to be more, or less, reactive than potassium	m?					
		(ii)	State <u>one</u> thing you would expect to <u>see</u> when rubidium is added to wa trough.	ater in a					
		(iii)	Give a balanced equation for the reaction of rubidium with water.	(4 marks)					
	e)	Pred	lict if rubidium chloride would:	_					
	C)	(i)	be soluble or insoluble in water						
		(ii)	have a low or high melting point	(2 marks)					
2.	a)	In ea	ach of the following statements, identify the metal from its description.						
		(i)	Objects made of iron are protected from corrosion by coating them wit in a process called galvanising.	th this metal					
		(ii)	This metal is found uncombined in nature and is used in jewellery and contacts.	in electrical					
		(iii)	This metal forms an alloy with tin (called bronze) and an alloy with zin brass).	nc (called					
		(iv)	Limestone is composed of a compound of this metal.						
		(v)	This metal burns with a bright white flame, so it is used in flares and in	1					
			pyrotechnics.	(5 marks)					

			(3 mark
c)	Give	two reasons why it makes sense to recycle alumi	nium.
			(2 marl
a)	The	adent placed a piece of copper wire in a solution of copper reacted according to the following equation $Cu_{(s)} + 2AgNO_{3(aq)} \rightarrow Cu(NO_{3})_{2(aq)} + 2AgNO_{3(aq)}$	n.
		Experiment	Observations
		copper wire silver nitrate solution	
	(i)	In the table above, write two observations that the 'Observations' column.	ne student would have recorded i (2 mark
	(ii)	What term is used to describe this type of reacti	on? (1 mar
)	This (i)	reaction is also a redox process. Write the ionic equation, omitting the spectator	
			•
	(ii)	State what is oxidised and what is reduced in ter	
		is/are oxidised b	
		is/are reduced by	y(2 mark
)	(i)	Two similar experiments were set up by other st when a reaction occurred and with an \times to show	
		copper wire was put in magnesium nitrate soluti	on.
		zinc wire was put in lead nitrate solution.	
	(ii)	From the results of these experiments, write the	order of reactivity of the three
	(11)	metals, copper, magnesium and zinc, starting wi	

nitro	At very high temperatures, nitrogen and oxygen will react with each other to nitrogen monoxide.			
(1)	write an equation for this reaction.	(2 marks		
(ii)	Give <u>one</u> example where this reaction would occur in everyday life.	_ `		
	• · · · · · · · · · · · · · · · · · · ·	_ (1 mark		
	$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$			
(i)	What would be seen as soon as nitrogen monoxide comes in contact wi	th air?		
		(1 mark		
(ii)	What volume of oxygen would be required to react with 2.5 dm ³ of nitr monoxide? (Assume that all conditions of temperature and pressure reconstant.)	-		
		(1 mark		
Dilu	te nitric acid reacts with lead (II) oxide according to the following equation	1.		
	$PbO_{(s)} + 2HNO_{3(aq)} \rightarrow Pb(NO_3)_{2(aq)} + H_2O_{(l)}$			
0.5 r	mol dm ⁻³ (0.5M). The resulting mixture was filtered and lead (II) nitrate cr			
(i)	Calculate the number of moles of nitric acid used in this reaction.			
(ii)	Calculate the formula mass of lead (II) nitrate.			
	(i) The contact (i) (ii) Dilu An e 0.5 r obtai	 (i) Write an equation for this reaction. (ii) Give one example where this reaction would occur in everyday life. The following equation shows what happens when nitrogen monoxide comes contact with air. 2NO_(g) + O_{2(g)} → 2NO_{2(g)} (i) What would be seen as soon as nitrogen monoxide comes in contact windown monoxide? (Assume that all conditions of temperature and pressure reaconstant.) Dilute nitric acid reacts with lead (II) oxide according to the following equation PbO_(s) + 2HNO_{3(aq)} → Pb(NO₃)_{2(aq)} + H₂O_(l) An excess of lead (II) oxide is added to 200 cm³ of dilute nitric acid of concent 0.5 mol dm⁻³ (0.5M). The resulting mixture was filtered and lead (II) nitrate crobtained from the filtrate by crystallisation. 		

	(i)	At room temperature, the physical state of sulfur isa	nd
	(-)	its colour is	
	(ii)	Two important allotropes of sulfur are and	
		sulfur.	
	(iii)	When sulfur is burned in air, it forms sulfur dioxide gas that has a	
		smell. (5 ma	ırk
b)	Sulfi	ur dioxide is converted to sulfur trioxide in the second stage of the Contact proc	ess
	(i)	Write a balanced equation for this conversion.	
		(2 ma	ırk
	(ii)	State the approximate temperature and the name or formula of the catalyst use this conversion.	d i
		(2 ma	ark
c)	Sulfi	uric acid shows different properties as a dilute acid and when in concentrated for	rr
	i)	Either describe one reaction, or write a balanced equation, which shows a typic property of sulfuric acid as a <u>dilute</u> acid.	Ca
		(2 ma	ır
	ii)	The equations shown below represent two of the properties that are typical o concentrated sulfuric acid. For each reaction, describe one thing that would seen and state the property exhibited by concentrated sulfuric acid.	
		<u>reaction 1</u> : $C_{12}H_{22}O_{11 (s)} \rightarrow 12C_{(s)} + 11H_{2}O_{(l)}$	
		observation:	
		In this reaction concentrated sulfuric acid acts as	_
		<u>reaction 2</u> : $Cu_{(s)} + 2H_2SO_{4(l)} \rightarrow CuSO_{4(s)} + 2H_2O_{(l)} + SO_{2(g)}$	
		observation:	
		In this reaction concentrated sulfuric acid acts as (4 ma	, ₁ , 1
		(4 11)	

6.	The statements below refer to the following substances:									
	Calci	-	ydroxide, copper(II) carbonate, potassium nitrate, anhydrous sodium carbo	onate,						
	a)	Choose, from this list, <u>one</u> substance in each case which, <u>when heated</u> , behaves as described below.								
		(i)	liberates a gas which relights a glowing splint							
		(ii)	changes from green to black							
		(iii)	gives off misty fumes							
		(iv)	sublimes to a violet vapour	(4 marks)						
	b)	Whic	ch substance from the above list is thermally stable?							
	-)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(1 mark)						
				_ ()						
SEC	TION		Answer any \underline{TWO} questions from this section, on the separate sheets each question carries 20 marks.	provided.						
7.	This	auesti	on refers to the electrolysis of copper(II) sulfate solution.							
,.	a)	(i)	(i) Draw a labelled diagram of the apparatus and circuit that you would use to carry out the electrolysis of an aqueous solution of copper() sulfate using carbon (inert)							
		(ii)	electrodes. Describe what would be <u>seen</u> at each electrode and give equations for the	(5 marks) ne reaction						
		` /	at each electrode.	(6 marks)						
		(iii)	Describe and explain the change in colour and pH of the solution.	(4 marks)						
	b)	and i	opper electrodes are used instead of carbon, there is a different result at the n the appearance of the solution.	ce of the solution.						
		(i)	State what happens at the anode and give an equation for the electrode r	eaction. (3 marks)						
		(ii)	Describe and explain the appearance of the solution after electrolysis.	(2 marks)						
8.			of dry hydrogen chloride gas can be prepared in the laboratory by adding ed sulfuric acid to solid sodium chloride.							
	a)	(i)	Draw a clear diagram of the apparatus that would be a suitable r carrying out the reaction, for drying the gas and the correct method into a gas jar.							
			Label <u>all items of apparatus</u> and the <u>name of the drying agent</u> .	(6 marks)						
		(ii) (iii)	State what would be <u>seen</u> when the reagents are mixed. Write a balanced equation for the reaction.	(2 marks) (2 marks)						
	b)	(i) (ii)	Describe a chemical test for the gas. Give a balanced equation for the reaction occurring during this test.	(2 marks) (2 marks)						
	c)	-	ain why hydrogen chloride dissolved in methyl benzene has no effect e hydrogen chloride dissolved in water is acidic.	on litmus (2 marks)						
	d)		er describe or give a balanced equation for (i) one chemical reaction hydrochloric acid, and (ii) one chemical involving concentrated by							

(4 marks)

acid.

9. The following qualitative tests were performed on unknown simple salts A, B, C and D. Read the descriptions of the results of these tests, then answer the questions below.

Salt A

When a flame test was performed on A, a lilac flame was observed. To an aqueous solution of A, acidified silver nitrate solution was added and a yellow precipitate U was formed.

Salt B

To an aqueous solution of B, sodium hydroxide solution was added dropwise until in excess. A slight white precipitate V was formed which did not dissolve in excess sodium hydroxide. A flame test was performed on solid B and a brick red flame was produced. Another sample of B was warmed with sodium hydroxide solution and aluminium turnings. The gas W was liberated, which turned damp red litmus blue.

Salt C

To an aqueous solution of C, sodium hydroxide solution was added dropwise until in excess. A white precipitate X was formed which did not dissolve in excess sodium hydroxide. When a flame test was performed on C, no colour was imparted to the flame. To an aqueous solution of C, acidified silver nitrate solution was added and a pale cream precipitate Y was formed.

Salt D

Some sodium hydroxide solution was added to a sample of D and warmed. The pungent gas W was evolved which turned damp red litmus blue. To another sample of D, dilute hydrochloric acid was added, and a colourless gas Z was liberated which turned lime water milky.

- a) Identify the <u>cation</u> and <u>anion</u> present in the four unknowns, A, B, C and D. (8 marks)
- b) (i) Give the **names** of the precipitates X and Y.
 - (ii) Give the <u>names</u> of the gases W and Z.

(4 marks)

- c) Write **full** balanced equations for the reactions of:
 - (i) A with acidified silver nitrate solution to give precipitate U.
 - (ii) B with sodium hydroxide solution to give precipitate V.

(4 marks)

- d) Write **ionic** equations (omitting spectator ions) for the reactions of:
 - (i) D with sodium hydroxide solution.
 - (ii) D and dilute hydrochloric acid.

(4 marks)