

Scéimeanna Marcála

Scrúduithe Ardteistiméireachta, 2001

Fisic agus Ceimic

Gnáthleibhéal

Marking Scheme

Leaving Certificate Examination, 2001

Physics and Chemistry

Ordinary Level

An Roinn Oideachais agus Eolaíochta

Leaving Certificate Examination 2001

Physics & Chemistry
Ordinary Level

Marking Scheme

Introduction

In considering this marking scheme the following points should be noted.

- 1. Words or expressions separated by a solidus, /, are alternative answers which are equally acceptable for the award of the assigned mark.
- 2. Words or expressions in round brackets, (), are alternatives to parts of an acceptable answer.
- 3. In some instances acceptable partial answers are given in square brackets, [], after the full answer to the particular item. In such cases, the marks indicated within the brackets cannot be awarded in addition to any marks already awarded for the item.
- 4. Where parts of an answer are assigned separate marks, alternatives from one part must correspond to alternatives from the other part(s) to merit the award of the marks assigned to both (all) parts.
- 5. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
- 6. The detail required in any answer is determined by the context and manner in which the question is asked and by the number of marks assigned to the item in the examination paper. In any instance, therefore, the detail required may vary from year to year.

Page 2 of 2

Outline Marking Scheme

SECTION 1 – PHYSICS

Any three questions

- 1. Any eleven of the following items (a), (b), (c), etc.
 - (a) 2×3 (b) 2×3 (c) 2×3 (d) 2×3 (e) 6 (f) 2×3 (g) 6
 - (h) 2×3 (i) 2×3 (j) 2×3 (k) 6 (l) 2×3 (m) 2×3 (n) 2×3 (0) 6
- 2. (a) State 4×3 Calculate 3×3 What 4×3
 - (b) Define 2×3 State 2×3 Calculate 4×3 What 3×3
- 3. (a) Define 4×3 On what 3 Outline 6×3
 - (b) Give 3×3 What 2×3 Outline 6×3
- 4. Explain 5×3 Describe 8×3 What 5×3 Give 4×3
- 5. (a) What 2×3 Describe 8×3 Name 6
 - (b) State 4×3 What 6 What 6 Give 6
- 6. Any two of the following parts
 - (a) Define 2×3 Give 2×3 Describe 5×3 Give 6
 - (b) What 3×3 Describe 8×3
 - (c) State 2×3 Define 2×3 Calculate 7×3
 - (d) What 4×3 How 3×3 State 2×3 State 2×3

SECTION II - CHEMISTRY

Any three questions

- 7. Any eleven of the following items (a), (b), (c), etc.
 - (a) 6 (b) 2×3 (c) 6 (d) 2×3 (e) 6 (f) 2×3 (g) 6
 - (h) 2×3 (i) 6 (j) 2×3 (k) 2×3 (l) 2×3 (m) 6 (n) 2×3 (o) 2×3
- 8. (a) What 4×3 Using 4×3 Give 2×3 Give 6
 - (b) Explain 4×3 State 6×3
- 9. (a) State 2×3 Define 2×3 Calculate 7×3
 - (b) Explain 6×3 Identify 2×6 What 3
- 10. What 6×3 (i) Describe 5×3 Give 2×3
 - (ii) Name 6 State 2×3 (iii) Calculate 5×3
- 11. (a) What 4×3 Give 4×3 Name 2×3
 - (b) Define 6×3 Identify 3×6
- 12. Any two of the following parts
 - (a) What 2×3 Calculate (i) 3×3 (ii) 3×3 (iii) 3×3
 - (b) (i)Why 2×3 (ii)Name 6 (iii) Name 2×6 (iv) How 3×3
 - (c) What 2×3 (i) Explain 4×3 (ii) Describe 2×3 (iii) Complete 3×3

NOTE: All questions will carry the same number of marks. However, one additional mark will be given to each of the first two questions in each Section for which the highest marks are obtained by the candidate

Deduct 2 marks for incorrect (no) units where indicated to a maximum of one such deduction per question.

SECTION I - PHYSICS

QUESTION 1

Any eleven parts

(a)
$$(momentum)$$
 mass \times velocity (speed) \dots 3

(b) $a = \frac{v - u}{t}$ / $a = \frac{9 - 3}{2}$ \dots 3

(c) force is proportional to the product of the masses $\int F \propto M_1 M_2$ / $F = G M_1 M_2$ \dots 3

inversely proportional to the distance squared / $\propto \frac{1}{d^2}$ \dots 3

(d) $(Boyle's \ law)$ pressure $(p)/pV/p_1V_1$ \dots 3 inversely proportional to volume / $\propto \frac{1}{V}$ / $= k$ / $= p_2V_2$ \dots 3

(e) magnifying glass / camera / binoculars / spectacles microscope / telescope / etc. any one ∞ 6

(g) compression waves on a spring / sound waves / ultrasonic waves / etc. any one ... 6

copy the diagram + one ray correct 2^{nd} ray + image

(f)

3

QUESTION 1 - continued

(h)	(dispersion)		2
	show (state): splitting (separation) (breaking up) into colours (spectrum) (rainbow) /	•••	3
	when light passes through a prism	•••	3
(i)	photo electric (emission)		3
(j)	(diffraction) show/state: spreading (bending) of waves around (through an opening in) an obstacle		3
(k)	frequency		6
(1)	proton (nucleus) negative		3
(m)	protects / prevents / melts / blows / determines (controls) (dictates) an appliance / a fire / if the current is too large /		3
	how much current can go through a circuit [to control the flow of charge 3]		3
(n)	less heat (energy) lost		3
(o)	a.c. / alternating		6

(a)	State				
	(1^{st})	body remains at rest (constant velocity)		•••	3
		unless force acts on it		•••	3
	(2^{nd})	rate of change of momentum / ma			3
		\propto (=) force (F)		•••	3
	(3^{rd})	to every action (force)		•••	3
	*	equal and opposite reaction (force)		•••	3
		Award marks for two laws only - maximum	•••	4×3	
Calcu	late (3×	F = ma		••••	3
		= 8 × 2.5		•••	3
		F = 20 N incorrect/no units(-2)		•••	3
What	(4×3)	$s = ut + \frac{1}{2}at^2$			2×3
		$= 0 + \frac{1}{2}(2.5)(5)^2$		•••	3
		= 31.25 (31) m incorrect/no units(-2)		•••	3

QUESTION 2 - continued

(b) Define (2 ×: (<i>K.E.</i>)	energy due to / example motion		3 3
State (2×3) (P.C.E.)			3 3
Calculate (4×3)	$KE = \frac{1}{2} mv^2$	•••	2×3
	$= \frac{1}{2} (1000) (20)^2$	•••	3
	= 2 × 10 ⁵ J incorrect / no	 units (–2)	3
What (3×3)	changes / reduced / drops		2 × 3
	heat / sound / to zero	,	3

(a) Define (4×3)			
(i) (temp	perature)		
	degree / °C / measure	•••	3
	of hotness	•••	3
	[how hot (cold) $\dots 2\times 3$]		
(ii)(thermom	etric property)		
	property that changes / an example	•••	3
	with temperature	•••	3
On which (3)	length	•••	3
Outline (6×3)			
Apparatus:	mercury thermometer / ice / steam	•••	3×3
Method:	length in ice (freezing point)		3
	length in steam (boiling point)		3
	difference between the two points = 100	•••	3
(b) Give (3×3)	elastic collisions / rapid motion / negligible volume of particles / random motion / negligible duration of collisions / straight line mo KE ∝ temperature any three		3×3
What (2×3) (Brow	wnian motion) molecules (particles) motion		3
Outline (6×3)			
App: smok	te cell / lamp / microscope any two	•••	2×3
Method: fill ce	ell		3
with a	smoke	•••	3
Result:			
show / state:			3
	particles	• • •	3

Explain (5×3	index) sin i / real depth		3
(i) (regractive	$+ \sin r / + \text{apparent depth}$	•••	3
	of the state of th		_
	$[1 \div \sin C \dots 2 \times 3]$		
(ii) (t.i.r.)	angle of incidence / light reflected (bounces)	•••	3
	greater than / back into	• • •	3
	the critical angle / the denser medium	•••	3
Describe (8×	3)		
Apparatus:			3
	plane mirror (ray box)	•••	3
	container	•••	3
Method: I	correct arrangement - container and mirror		3
	- 2 pins	• • •	3 3 3
	position of no parallax	• • •	3
	measure (show) R.D. and A.D.	•••	3
	$n = \frac{\text{R.D.}}{\text{A.D.}}$	•••	3
	OR		OR
II	correct arrangement		2×3
	position of incident & emergent ray	•••	3
	measure (show) angle i and angle r		3
	$n = \frac{\sin i}{2\pi i}$		3
	$\frac{n-\frac{1}{\sin r}}{\sin r}$	• • •	3
XX/L - 4 (F2)	$\sin i$		•
What (5×3)	$n=\frac{1}{\sin r}$	•••	3
	$1.5 = \frac{\sin 40^{\circ}}{\sin r}$		2×3
	$\sin r = 0.43 (0.4285)$	•••	3
	r = 25	•••	3
Give (4×3)	reflector on a bicycle (car) / reflective road signs / examples where prisms are used e.g. binoculars, periscope endoscope / telecommunications / optical fibres / etc.		
	1 st correct	• • •	3×3
	2 nd correct		2

(a) What (2)	(3)				
(electric curr	•	flow / movement charge / electrons		•••	3
Describe (8×		_ •• ·			
Apparatus:		y (power supply) nt / heating coil / fuse wire		•••	3 3
Method:	turn o	n the current		•••	3
Result:	tempe	rature rises / fuse wire melts			3
(ii) (force on	conduct	or)			
Apparatus:		battery (power supply) / ma	agnet / foil (conductor) any two	•••	2×3
Method:	turn or	n the current			3
Result:	foil (co	onductor) moves		•••	3
Name(6)	loudsp	eaker / any moving-coil mete	er / motor / etc. any one	•••	6
(b) State (4×	3)				
I		urrent) induced of change of magnetic flux (field)	•••	3
п		t (emf) induced es change			3
What (6)	opposi	te direction / left		•••	6
What (6)	left			•••	6
Give (6)	genera	tor, transformer / etc.	any one		6

Any two parts

ratio of charge / charge (Q) divided to potential / V		•••	3
/ distance / permittivity (dielectric)	any two		2×3
parallel plates electroscope			3
correct arrangement change distance (area)			3
$C \propto A / C \propto \frac{1}{d}$			3
rectifiers / TVs / electronic flash / tuning of radios / to store charge / et	c. any one		6
single / one wavelength / frequency / colour			3 2×3
laser / sodium / monochromatic ligh diffraction grating / Young's slits screen / spectrometer	t	•••	3 3 3
apparatus arranged correctly		•••	2×3
$s/n/\theta(x,D)$	any two	•••	3
$n\lambda =$		•••	3
	to potential $/V$ / distance / permittivity (dielectric) parallel plates electroscope correct arrangement change distance (area) $C \propto A / C \propto \frac{1}{d}$ rectifiers / TVs / electronic flash / tuning of radios / to store charge / et single / one wavelength / frequency / colour laser / sodium / monochromatic light diffraction grating / Young's slits screen / spectrometer apparatus arranged correctly $S / N / \theta (x, D)$	to potential $/V$ / distance / permittivity (dielectric) any two parallel plates electroscope correct arrangement change distance (area) $C \propto A / C \propto \frac{1}{d}$ rectifiers / TVs / electronic flash / tuning of radios / to store charge / etc. any one single / one wavelength / frequency / colour laser / sodium / monochromatic light diffraction grating / Young's slits screen / spectrometer apparatus arranged correctly $s / n / \theta (x, D)$ any two	to potential $/V$ distance / permittivity (dielectric) any two parallel plates electroscope correct arrangement change distance (area) $C \propto A / C \propto \frac{1}{d}$ rectifiers / TVs / electronic flash / tuning of radios / to store charge / etc. any one single / one wavelength / frequency / colour laser / sodium / monochromatic light diffraction grating / Young's slits screen / spectrometer apparatus arranged correctly $s/n / \theta (x, D)$ any two

 $s \sin \theta / \frac{sx}{D}$

3

QUESTION 6 - continued

(c) State (2×3) (Ohm's law)	voltage (V) proportional to current $(I) / = RI$		3
Define (2×3) (potential difference)	work done / energy required unit charge	•••	3
	[needed for charge to move 3]		
Calculate (7×3)			
(i)	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	•••	3
	$\frac{1}{R} = \frac{1}{4} + \frac{1}{4}$	•••	3
	$\frac{1}{R} = \frac{2}{4}$	•••	3
	R = 2 ohms incorrect / no units(-2)		3
(ii)	$V = R \times I$		3
	$6 = 2 \times I$	•••	3
	I = 3 amps incorrect / no units (-2)		3

QUESTION 6 - continued

(d) What (4×3) (i) (radioactive	·		3
	with the emission of radiation (energy) (particles)	•••	3
(ii) (half-life)	time for half / time for a sample	•••	3
	nuclei (atoms) to decay / to decrease to half its activity (mass)	•••	3
How (3×3)	3 half lives $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $\frac{1}{8}$		3 3 3
State (2×3)	skin burns / leukaemia / cataracts / radiation sickness / bone marrow disease / genetic defects / cancer /death / etc. any two		2×3
Give (2×3)	don't handle directly / store in safe place / wear protective clothing / reduce duration of exposure / do not eat (drink) near source / etc. any two	•••	2×3

SECTION II - CHEMISTRY

QUESTION 7

Any eleven parts

(a)	neon	•••	6
(b)	region (space) where electrons likely to be found	•••	3
(c)	ice / iodine / dry ice / organic solids / etc. any one	•••	6
(d)	N and 3 bonds correct shape	•••	3
(e)	variable valency / coloured compounds / catalysts any one		6
(f)	heat taken in / absorbed [example 3]		3
(g)	Al_2O_3		6
(h)	40 + 12 + 48 / 100		3
	40	•••	3
(i)	OH / hydroxyl	•••	6
(j)	Na ₂ SO ₄ 2NaOH		3
(k)	$pH = -\log_{10}[H^{+}]$ / $pH = -\log_{10}(0.01)$ pH = 2		3

QUESTION 7 - continued

(1)	an acid a carbonate		3
(m)	vinegar / cellulose acetate / rayon / solvent etc any one		6
(n)	C_6 / benzene ring with double bonds (circle) H_6		3
(o)	1 mole (12 g) = $6 \times 10^{23} / 8 \div 32 / 0.25$	•••	3
	1.5×10^{23}		3

(a) What (4×3)			
(i) (ionic bond)	transfer of electrons / attraction	•••	3
	from one atom to another / oppositely charged		_
	ions	•••	3
[E.N. differe	ence > 1.7 / between a metal and a non-metal	3]	
(ii) (electronegativi	ty) attraction		3
	for electrons	•••	3
	[determines what type of bond is formed	3]	
Using (4×3)	Mg = 1.2		3
Comme (100)	O = 3.5		3
,	difference = 2.3	•••	3
	> 1.7	•••	3
Give (2×3)	name		3
	formula	•••	3
Give (6)	high m.p. / high b.p. / crystalline / solids / hard / brittle / soluble in water / conduct electricity		
	any one	•••	6
(b) Explain (4×3)			
(i) (mass no.)	number of protons	•••	3
·	and neutrons	•••	3
(ii) (isotope)	same number of protons (atomic number) /		-
	same element (atom)	•••	3
	different number of neutrons (mass number)	•••	3

State (6×3)

	electrons	protons	neutrons
¹² C ₆	6	6	6
$^{14}C_6$	6	6	8

... 6×3

(a) State (2×3)			
(Hess's law)	heat change independent of the path		3
Define (2×3) (heat of combustion)	heat change when one mole burned in oxygen	•••	3
Calculate (7×3)	$C_2H_2 \rightarrow 2C + H_2 \Delta H = -225 \text{ kJ mol}^{-1}$	•••	2×3
	$2C + 2O_2 \rightarrow 2CO_2 \Delta H = -786 \text{ kJ mol}^{-1}$		2×3
	$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O \Delta H = -286 \text{ kJ mol}^{-1}$		2×3
$C_2H_2 + 2$	$2\frac{1}{2}O_2 \rightarrow 2CO_2 + H_2O \Delta H = -1297 \text{ kJ mol}^{-1}$		3
(b) Explain (6×3)			
(i) (oxidation)	loss of electrons		2×3 3
(ii) (reduction)	gain of electrons [words loss and gain in reverse 2×3]		2×3 3
Identify(2×6)	(oxidised): H ₂	•••	6
	(reduced) Cu / CuO [reverse order 6]	•••	6
What (3)	CuO		3

What (6×3)			
(i) (standard solution)	concentration / molarity known	•••	2×3 3
(ii) (neutralisation)	acid a base salt and water		3 3 3
(i) Describe (5×3)	rinse burette with acid (base) / rinse pipette with base (acid) / acid (base)in burette / read volume of acid(base) / pipette base (acid) into flask base (acid) in flask / add indicator / add acid to base (base to acid) / stop when indicator changes colour / read volume of acid (base) any five	•••	5×3
Give (2×3)	white tile / rinse apparatus with water/ add acid slowly (drop wise) / swirl flask continuously / wash down the sides of the flask / read bottom of the meniscus / three accurate titres		
	any two	•••	2×3
(ii) Name (6)	any named indicator / universal indicator	•••	6
State (2×3)	initial colour in the flask final colour at end point [reverse order 3]		3
(iii) Calculate (5×3)			
	$\frac{M_1 V_1}{n_1} = \frac{M_2 V_2}{n_2}$		2×3
	$\frac{M_1 \times 25}{1} = \frac{22.5 \times 0.1}{1}$		2×3
	$M_{\rm c} = 0.00$		2

(a) What (4×3)				
(i) (Saturated)	single		•••	3
	bonds		•••	3
	[all valencies sat	isfied 2×3]		
(ii) (homologous s	series)			
		pers differ by CH ₂ /		
	same general for			
	gradual change in	n physical properties /		
	[same functional	group 3]	•••	2×3
Give (4×3)	Methane	Propane		2×3
	Wiemane	Tropano	•••	4.
	Н	ннн		
				22
	H - C - H	H - C - C - C - H	•••	2×3
	Н	н н н		
Name (2×3)	alkanes			2×3
2 (2.10)	ane [- ane	3]	•••	2/3
	-	,		
(b) Define (6×3)				
(i) <i>(acid)</i>	proton / H ⁺ / pH ·	< 7		3
	donor	·	•••	3
	. 4			
(ii) <i>(base)</i>	proton / H ⁺ / pH	> 7	•••	3
	acceptor		•••	3
(iii) (conj. pair)	two species / acid	l + base		3
	differ by a proton		•••	3
T1 /10 /0 0				
Identify (3×6)	CII COOII			
(acid)	CH₃COOH		•••	6
(base)	H_2O			6
·	[reverse order	6]	- *	-
(conj. pair)	CH ₃ COOH + C	$H_3COO^- / H_2O + H_3O^+$	•••	6

Any two parts

(a) What (2× (mole)	3)	Avogadro number, of particles $/6 \times 10^{23}$ molecular mass, in grams $/$ same number of particles as 12 g of C		
		any one [22.4 litres 3]	•••	2×3
Calculate (i) (3×3)	12 g	1 mole	•••	3
	3 g	— 0.25 mole		3
•	0.25		•••	3
(ii) (3×3)	12 +	32		3
	44		•••	3
	11 g		•••	3
		incorrect / no units (-2)		
(iii) (3×3)	1 mole	≥ CO ₂ 22.4 litres	•••	3
		22.4×0.25	•••	3
		5.6 litres	•••	3
		incorrect / no units (-2)		
(b) (i)Why (2	×3)	conduct current / electricity	•••	3
(ii) Name (6)		carbon / platinum / stainless steel any one	•••	6
(iii) Name (2>	(6)	X = hydrogen Y = oxygen	•••	6 6
		[correct gases in reverse order 6]		
(iv)How (3×3))	glowing splint / burns relights / with a pop	•••	3 2×3

QUESTION 12 - continued

(c) What (2×3)	list of elements / in order of activity(reactivity) / ability to lose electrons		•••	3
			•••	3
(i) Explain (4×3)	K – very reactive			
	Mg – reacts slowly			
	Cu – no reaction	.4		
		1 st correct	• • •	2×3
		2 nd correct	• • •	3
		3 rd correct	•••	3
(ii) Describe (2×3)	coated / covered			3
. ,	with copper			3
	[turns brown	2×3]		
(iii) Complete (3×3)	MgSO ₄ , Cu			
		1 st correct	•••	2×3
		2 nd correct		3