

LEAVING CERTIFICATE EXAMINATION, 2005

MATHEMATICS - ORDINARY LEVEL

	PAPER 1 (300 marks)
ТН	IURSDAY, 9 JUNE – MORNING, 9:30 to 12:00
	Attempt SIX QUESTIONS (50 marks each).
WARNING:	Marks will be lost if all necessary work is not clearly shown. Answers should include the appropriate units of measurement, where relevant.

- 1. (a) Express 35 cm as a fraction of 1 m. Give your answer in its simplest form.
 - (b) (i) The approximation 50×80 was used for the calculation 51×79 . Find the percentage error, correct to one decimal place.
 - (ii) Express the ratio $\frac{1}{2} : \frac{1}{3} : \frac{1}{4}$ as a ratio of natural numbers. Divide 325 in the ratio $\frac{1}{2} : \frac{1}{3} : \frac{1}{4}$.
 - (c) At the start of the year 2000 the population of a particular town was *P*. During the year 2000, the population of the town increased by 10%.
 - (i) Express, in terms of P, the population of the town at the end of the year 2000.
 - (ii) During the year 2001 the population of the town increased by 4%.During the year 2002 the population increased by 2%.Find the total percentage increase in the population of the town over the three years.
 - (iii) The actual increase in the population was 8344. Find the value of P.
- 2. (a) Find the value of $x^2 5xy$ when x = 3 and y = -2.
 - (b) Solve for x and y x + 3 = 2y xy 7y + 8 = 0.
 - (c) (i) Write $\sqrt{x} + \frac{1}{\sqrt{x}}$ as a single fraction.
 - (ii) Hence, or otherwise, simplify $\left(\frac{2\sqrt{x}}{1+x}\right)\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$.
 - (iii) Solve for x $\left(\frac{2\sqrt{x}}{1+x}\right)\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) = x 3.$

- 3. (a) Given that ax + b = c, express x in terms of a, b and c, where $a \ne 0$.
 - **(b)** (i) Find A, the solution set of $3x 2 \le 4$, $x \in \mathbb{Z}$.
 - (ii) Find B, the solution set of $\frac{1-3x}{2} < 5$, $x \in \mathbb{Z}$.
 - (iii) List the elements of $A \cap B$.
 - (c) Let $f(x) = 2x^3 3x^2 11x + 6$.
 - (i) Verify that f(3) = 0.
 - (ii) Solve the equation

$$2x^3 - 3x^2 - 11x + 6 = 0.$$

4. (a) Let u = 4 - 2i, where $i^2 = -1$.

Plot

- **(i)** *u*
- (ii) u-4

on an Argand diagram.

- **(b)** Let w = 1 + 3i.
 - (i) Express $\frac{2}{w}$ in the form x + yi, where $x, y \in \mathbf{R}$.
 - (ii) Investigate whether |iw + w| = |iw| + |w|.
- (c) Let z = 1 2i.
 - (i) Write down \bar{z} , the complex conjugate of z.
 - (ii) Find the real numbers k and t such that

$$kz + t\overline{z} = 2z^2.$$

- 5. (a) The first term of an arithmetic sequence is 9 and the second term is 13.
 - (i) Find the common difference.
 - (ii) Find the third term.
 - (b) The sum of the first n terms of an arithmetic series is given by

$$S_n = n^2 + n.$$

- (i) Find a, the first term.
- (ii) Find S_2 , the sum of the first two terms.
- (iii) Find d, the common difference.
- (iv) Write down the first five terms of the series.
- (c) In a geometric sequence of positive terms, the third term is $\frac{1}{4}$ and the fifth term is $\frac{1}{16}$.
 - (i) Find r, the common ratio.
 - (ii) Find a, the first term.
 - (iii) How many terms of the sequence are greater than 0.01?
- 6. (a) Let $g(x) = \frac{x+5}{2}$, $x \in \mathbb{R}$. Find g(0) + g(2).
 - **(b)** Differentiate $3x x^2$ with respect to x from first principles.
 - (c) Let $f(x) = x^2 + px + 10$, $x \in \mathbb{R}$, where $p \in \mathbb{Z}$.
 - (i) Find f'(x), the derivative of f(x).
 - (ii) The minimum value of f(x) is at x = 3. Find the value of p.
 - (iii) Find the equation of the tangent to f(x) at the point (0, 10).

- 7. (a) Differentiate $9 + 3x 5x^2$ with respect to x.
 - **(b)** (i) Differentiate $(3x^2 2)(x^2 + 4)$ with respect to x.
 - (ii) Given that $y = \frac{x^2}{x-1}$, find $\frac{dy}{dx}$ when x = 3.
 - (c) A car begins to slow down at p in order to stop at a red traffic light at q.

The distance of the car from p, after t seconds, is given by

$$s = 12t - \frac{3}{2}t^2$$

where *s* is in metres.

- (i) Find the speed of the car as it passes p.
- (ii) Find the time taken to stop.
- (iii) The car stops exactly at q. Find the distance from p to q.
- 8. Let $f(x) = \frac{1}{x-1}$, $x \in \mathbb{R}$, $x \neq 1$.
 - (i) Find f(-3), f(-1.5), f(0.5), f(1.5), f(5).
 - (ii) Draw the graph of the function f from x = -3 to x = 5.
 - (iii) On the same diagram, draw the graph of the function

$$g(x) = x + 1$$

in the domain $-2 \le x \le 2$, $x \in \mathbb{R}$.

- (iv) Use your graphs to estimate the values of x for which f(x) = g(x).
- (v) Find, using algebra, the values of x for which f(x) = g(x).

Blank Page