MARKING SCHEME

JUNIOR CERTIFICATE EXAMINATION 2005

MATHEMATICS – ORDINARY LEVEL – PAPER 1

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - *Blunders* mathematical errors/omissions (-3)
 - *Slips* numerical errors (-1)
 - *Misreadings* (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct*, *relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. *Worthless* work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more *Attempts* even when *Attempts* have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. \in 5.50 may be written as \in 5.50.

QUESTION 1

Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	20 (5, 5, 5, 5) marks	Att $(2, 2, 2, 2)$
Part (c)	20 (5, 5, 5, 5) marks	Att $(2, 2, 2, 2)$

Part (a)(i) 5 marks Att 2

(i) $P = \{x, y, w\}$

Write down a subset of P that has one element

(i) $\{x\} \text{ or } \{y\} \text{ or } \{w\}$

Blunders (-3)

B1 Any inapplicable subset of *P*. [proper or improper]

Misreadings (-1)

M1 Subsets of *P* with two elements.

Part (a)(ii) 5 marks Att 2

(ii) $P = \{x, y, w\}$

Write down a subset of *P* that has two elements.

(ii) $\{x, y\} \text{ or } \{x, w\} \text{ or } \{y, w\}$

Blunders (-3)

B1 Any inapplicable subset of *P*. (proper or improper)

Misreadings (-1)

M1 Subsets of *P* with one element.

U is the universal set.

 $A = \{1, 2, 4, 8\},$ the set of divisors of 8.

 $B = \{1, 2, 3, 4, 6, 12\},$ the set of divisors of 12.

 $C = \{1, 2, 4, 5, 10, 20\},$ the set of divisors of 20.

Part (b) (i)

5 marks

Att 2

(i)

$$A \cap C = \{1, 2, 4\}$$

Blunders(-3)

B1 Any incorrect set of the elements of U other than the misreading as below.

Misreadings(-1)

M1 $A \cup C$ giving $\{1, 2, 4, 5, 8, 10, 20\}$.

Part (b) (ii)

5 marks

Att 2

(ii)

$$B' = \{5, 7, 8, 9, 10, 20\}$$

Slips(-1)

S1 Each correct element omitted and/or each incorrect element included.

Attempts (2 marks)

A1 B or any proper subset of B.

Part (b) (iii)

5 marks

Att 2

(iii)

$$C \setminus (A \cap B) = \{5, 10, 20\}$$

Blunders (-3)

B1 Any incorrect set of the elements of *U* other than the misreading as below.

Misreadings (-1)

M1 $(A \cap B) \setminus C$ giving the Null Set.(\emptyset)

Part (b) (iv)

5 marks

Att 2

(iv) Using the Venn diagram above, or otherwise, find the highest common factor of 8, 12 and 20.

(iv) H.C.F. = 4

4 is the highest factor in $A \cap B \cap C$. Common factors are 1, 2, 4 \Rightarrow H.C.F. = 4.

Or $8 = 2 \times 2 \times 2$: $12 = 2 \times 2 \times 3$: $20 = 2 \times 2 \times 5$: \Rightarrow H. C. $F = 2 \times 2 = 4$

Blunders (-3)

B1 An inapplicable element of *U*. [But see S1].

B2 A listing of elements of *U* with 4 included.

B3 Correct factors of 8 or 12 or 20 but no conclusion drawn re H.C.F.

Slips(-1)

S1 1 or 2 as H.C.F.

Misreadings (-1)

M1 L.C.M. given i.e. 120.

Attempts (2 marks)

A1 Incorrect factors of 8 and/or 10 and/or 20 e.g. $8 = 2 \times 3$.

Worthless (0)

W1 Any number $\notin U$ except 120. [See M1].

W2 A listing of elements of *U* with 4 not included.

Part (c) (i) 5 marks Att 2

M is the set of natural numbers from 1 to 20, inclusive.

- (i) List the elements of M that are multiples of 3.
 - (i) 3, 6, 9, 12, 15, 18.

Slips(-1)

S1 Each correct element omitted and/or each incorrect element included.

Worthless (0)

W1 No applicable multiple of 3 appears.

(ii) List the elements of *M* that are multiples of 5.

(ii) 5, 10, 15, 20.

Slips(-1)

Each correct element omitted and/or each incorrect element included.

Worthless (0)

No applicable multiple of 5 appears. W1

Part (c	e) (iii)	5 marks	Att 2
(iii)		Write down the lowest common multiple of 3 and 5.	

(iii)
$$3, 6, 9, 12, \bigcirc 18.$$
 $5, 10, \bigcirc 5, 20.$ Or $3 \times 5 = 15$

Blunders (-3)

An inapplicable multiple of 3 only and/or an inapplicable multiple of 5 only.

Misreadings (-1)

M1 H.C.F = 1.

Worthless (0)

Numbers other than multiples of 3 or 5 (But see 1st *)

Accept candidate's least common number from their incorrect answers in parts (i) and (ii) for full marks.

Accept an indication of candidate's L.C.M. for full marks.

Part (c) (iv) 5 marks Att 2

(iv) Express 10 as the sum of three prime numbers

(iv) 10 = 2 + 3 + 5.

* Accept a listing of 2, 3, 5 for full marks.

Blunders (-3)

B1 Each correct prime constituent omitted and/or each incorrect constituent included.

Attempts (2 marks)

A1 Some attempt at product e.g. $1 \times 2 \times 5$. (But see W1)

Worthless (0)

W1 No applicable prime number appears i.e. 2 or 3 or 5 do not appear.

OUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 (5, 10, 5) marks	Att (2,3,2)
Part (c)	20 (5, 5, 10) marks	Att (2,2,3)

Part (a) 10 marks Att 3

If 12 m² of carpet cost €504, find the cost of 15 m² of the same carpet.

(a)

$$12 \text{ m}^2 \equiv 504$$

$$\Rightarrow 1\text{m}^2 \equiv \frac{504}{12} = 42$$

$$\Rightarrow 15\text{m}^2 \equiv 42 \times 15 = 630$$

- * Correct answer without work \Rightarrow 7 marks.
- * $\frac{12}{15} \times 504 = 403 \cdot 2 \implies 7 \text{ marks (B1)}.$
- * $\frac{4}{5} \times 504 = 403 \cdot 2 \implies 7 \text{ marks (B1)}.$
- * Indicates $\frac{15}{12}$ or $\frac{5}{4}$ only and stops. \Rightarrow 4 marks. (No use of 504 (-3) and possible *Slips* (-3)).
- * $\frac{504}{12}$ or $\frac{504}{12} = 42$ and stops $\Rightarrow 4$ marks (No use of 15 (-3) and possible *Slips* (-3)).
- * $504 \times 15 \text{ or } 504 \times 15 = 7560 \implies 4 \text{ marks.}$
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

B1
$$\frac{12}{15} \times 504$$
 or $\frac{4}{5} \times 504$ and continues. [403 · 20 as answer.]

- B2 Divisor $\neq 12$ and continues. [But see B1]
- B3 Incorrect multiplier i.e. ≠15 and continues. [But see B1]
- B4 Divisor $\neq 4$ and continues. [But see B1]
- B5 Incorrect multiplier i.e. $\neq 5$ and continues. [But see B1]
- B6 15:12 = 504:x and continues.
- B7 Error in decimal point.

Slips(-1)

S1 Numerical errors (max -3).

Attempts (3 marks)

- A1 Divisor $\neq 12$ or $\neq 4$ e.g. $\frac{504}{15}$ or $\frac{504}{5}$ and stops.
- A2 Indicates $\frac{12}{15}$ or $\frac{4}{5}$ or 12: 15 or 504: x only and stops.
- A3 6048 only.i.e. multiplies 504 by 12.
- A4 $\frac{1}{12}$ only appears

Worthless (0)

W1 504 + 15 = 519.

(i) Simplify $\frac{a^9 \times a^5}{a^6 \times a^2}$, giving your answer in the form a^n , where $n \in \mathbb{N}$.

(i)
$$\frac{a^9 \times a^5}{a^6 \times a^2} = \frac{a^{14}}{a^8} = a^6$$

- * $\frac{a^{14}}{a^8}$ and stops \Rightarrow 2 marks.
- * a^{14} and stops \Rightarrow 2 marks.
- * $a^3 \times a^3$ and stops $\Rightarrow 2$ marks.
- * Correct answer without work \Rightarrow 2 marks.

Blunders (-3)

- B1 Each error in calculation involving indices.
- B2 Each incorrect number of a's in the extended form.
- B3 Each incorrect elimination in the extended form.
- B4 $a^3 \times a^3$ as an answer.

Slips(-1)

- S1 $\frac{a^{14}}{a^8} = 6$ or $\frac{a^{14}}{a^8} = \frac{1}{a^{-6}}$ as final answers.
- S2 $a \times a \times a \times a \times a \times a$ as answer.

Attempts (2 marks)

A1 Some manipulation of indices e.g. $a^9 \times a^5 = a^{45}$ only.

(ii) By rounding each of these numbers to the nearest whole number, estimate the value of $\frac{56 \cdot 214}{2 \cdot 31 + 5 \cdot 79}$.

(ii)
$$\frac{56 \cdot 214}{2 \cdot 31 + 5 \cdot 79}$$
 is approximately equal to:
$$\frac{56}{2} + 6 = \frac{56}{8} = 7$$

- * $\frac{56}{2+6}$ and stops \Rightarrow 4 marks.
- * No penalty if the intermediate step between approximations and final answer not shown e.g. $\frac{56}{8}$ not shown.

Blunders (-3)

- B1 Error in rounding off to the nearest whole number (each time).
- B2 Decimal point error in calculation of approximate value.
- B3 An arithmetical operation other than indicated.

B4
$$\frac{56}{2} + \frac{56}{6}$$
 and continues.

B5
$$\frac{56}{2} + 6 = 28 + 6 = 34$$
.

Slips(-1)

S1 Numerical errors in arithmetical operations.

Attempts (3 marks)

A1 Only one or two approximations made to the given numbers.

Worthless (0)

W1 No approximations made to given numbers.

(iii) Using a calculator, or otherwise, find the exact value of $\frac{56 \cdot 214}{2 \cdot 31 + 5 \cdot 79}$.

(iii)
$$\frac{56 \cdot 214}{8 \cdot 1} = 6 \cdot 94$$

Blunders (-3)

B1 Otherwise: Error(s) in decimal point.

B2 Otherwise:
$$\frac{56 \cdot 214}{2 \cdot 31} + \frac{56 \cdot 214}{5 \cdot 79} = 24.335 + 9.709 = 34 \cdot 044$$
.

B3 *Otherwise*:
$$\frac{56 \cdot 214}{2 \cdot 31} + 5 \cdot 79 = 30 \cdot 12506494$$
.

B4 Calculator: Incorrect Answer.

Slips(-1)

S1 *Otherwise:* numerical errors in addition or division. (max –3).

Attempts (2 marks)

A1 Some correct calculation done.

(i) Using a calculator, or otherwise, find the exact value of: $49^{\frac{1}{2}}$

(i)

7

Blunders (-3)

B1 Mishandles
$$49^{\frac{1}{2}}$$
 e.g. $49^{\frac{1}{2}} = 2401$, $49^{\frac{1}{2}} = 24 \cdot 5$, $49^{\frac{1}{2}} = 49 \cdot 5$, $49^{\frac{1}{2}} = 98$, $49^{\frac{1}{2}} = \frac{99}{2}$.

- B2 Calculator: Incorrect Answer.
- B3 Otherwise: error in use of Maths. Tables e.g. 2 · 214 (wrong page).

Misreadings (-1)

M1
$$49^{\frac{1}{2}} = \frac{1}{49^2} = \frac{1}{2401} = 0.0004164$$
.

M2
$$49^{\frac{1}{2}} = \sqrt[3]{49} = 3.6593.$$

Attempts (2 marks)

A1 $\sqrt{\ }$ is mentioned.

Part (c) (ii) 5 marks Att 2

(ii) Using a calculator, or otherwise, find the exact value of $\frac{1}{6 \cdot 4}$.

(ii)
$$\frac{1}{6 \cdot 4} = 0.15625$$

Blunders (-3)

B1
$$\frac{1}{6 \cdot 4} = \sqrt{6 \cdot 4} = 2 \cdot 529 \text{ or } (6 \cdot 4)^2 = 40 \cdot 96.$$

B2
$$6 \cdot 4 \times 1 = 6 \cdot 4 \text{ or } \frac{1}{24}$$
.

- B3 Calculator: Incorrect Answer.
- B4 Otherwise: Decimal point error in division or in use of Maths. Tables e.g. $\frac{1}{6\cdot 4} = 1563$.

Slips(-1)

- S1 Otherwise: numerical errors (max. of -3).
- S2 *Maths. Tables:* 0.1563.
- S3 Rounded off to 0.2, 0.16, 0.156, 0.1563.
- S4 Incorrectly rounded off e.g. 0·1562, also attracts S3.

Attempts (2 marks)

A1 Some correct calculation done.

A2
$$\frac{1}{6 \cdot 4} = \frac{10}{64}$$
 or $= \frac{5}{32}$ and stops.

(iii) Using a calculator, or otherwise, evaluate

$$\sqrt{65\cdot61} \times \frac{3\cdot14}{0\cdot47} - (2\cdot42)^2$$
.

Give your answer correct to two decimal places.

Ø (iii)

$$8 \cdot 1 \times 6 \cdot 6808511 - 5.8564$$
 (3 marks)

$$= 54 \cdot 114894 - 5 \cdot 8564$$
 (6 marks)

$$= 48 \cdot 258494$$
 (9 marks)

$$= 48 \cdot 26.$$
 (10 marks)

- * Correct answer without work \Rightarrow 7 marks.
- * Correct answer (without work) incorrectly rounded off \Rightarrow 6 marks.(See 1st * and S3).

Blunders (-3)

- B1 Mishandles $\sqrt{65.61}$ e.g. $(65.61)^2 = 4304.6721$.
- B2 Mishandles $(2 \cdot 42)^2$ e.g. $2 \cdot 42 \times 2 = 4 \cdot 84$.
- B3 An arithmetical operation other than a given one e.g. + for \times .

B4
$$\frac{\sqrt{65 \cdot 61} \times 3 \cdot 14 - (2 \cdot 42)^2}{0 \cdot 47} = 41 \cdot 65 \text{ (breaking order). [Check candidate's calculations]}$$

B5
$$\sqrt{65 \cdot 61} - (2 \cdot 42)^2 \times \frac{3 \cdot 14}{0 \cdot 47} = 14 \cdot 99$$
 (breaking order). [Check candidate's calculations]

B6 Error in decimal point.

Slips(-1)

- S1 Numerical errors in arithmetical operations (to max-3).
- S2 Each rounding off which would affect the final rounded off answer (max –3). [Check candidate's calculations]
- S3 Fails to round off or incorrectly rounds off when giving final answer.

Attempts (3 marks)

- A1 *Calculator*: incorrect answer without work.
- A2 $\sqrt{65 \cdot 61} = 8 \cdot 1$ and stops.
- A3 $\frac{3.14}{0.47} = 6.680851064$ and stops.
- A4 $\sqrt{65 \cdot 61} \times 3 \cdot 14 = 25 \cdot 434$ and stops.
- A5 $(2 \cdot 42)^2 = 5 \cdot 8564$ and stops.

OUESTION 3

Part (a)	10 marks	Att 3
Part (b)	20 (10, 10) marks	Att $(3, 3)$
Part (c)	20 (10, 10) marks	Att (3, 3)

Part (a) 10 marks Att 3

(a) Aoife bought 3 compact discs at $\in 16 \cdot 50$ each and 2 magazines at $\in 4 \cdot 20$ each. How much did she pay altogether?

(a)

 $16 \cdot 50 \times 3 = 49 \cdot 50$

 $4 \cdot 20 \times 2 = 8 \cdot 40$

 \Rightarrow total cost: $49 \cdot 50 + 8 \cdot 40 = 57 \cdot 90$.

or

 $16 \cdot 50 + 16 \cdot 50 + 16 \cdot 50 = 49 \cdot 50$.

 $4 \cdot 20 + 4 \cdot 20 = 8 \cdot 40$

 \Rightarrow total cost: $49 \cdot 50 + 8 \cdot 40 = 57 \cdot 90$.

- * Accept 5790, 57.90 or 57.9 regardless of subsequent labelling or work.
- * Final addition step subject to maximum deduction of -3.
- * Adds 16.50 to 4.20 = 20.70 and stops \Rightarrow 3 marks. [Oversimplification].
- * Correct answer without work \Rightarrow 7 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Each missing product when finding items cost e.g. 16.50 not multiplied by 3.
- B2 Incorrect number of additions when finding items cost e.g. 16.50 + 16.50 only.
- B3 Fails to find total cost i.e. no addition.
- B4 $49 \cdot 50 8 \cdot 40 = 41 \cdot 10$.
- B5 Error in decimal point.

Slips (−1)

S1 Numerical errors (to max - 3).

(i) Patrick bought a car for €14 080 and sold it for €16 000. Calculate his profit as a percentage of the selling price.

Æ (i)

Profit: €16 000- €14 080 = €1920

Z

Percentage of the selling price:

$$\frac{1920}{16000} \times 100 = 12\%$$

Profit: (5 marks)

- * Correct answer without work \Rightarrow 2 marks.
- * Incorrect answer without work \Rightarrow 0 marks.
- * $\frac{16000}{1920} + 100 = 8 \cdot 3 + 100 = 108 \cdot 3 \Rightarrow 2 \text{ marks.}$

Blunders (-3)

B1 Adds €14 080 to €16 000.

Slips(-1)

S1 Numerical errors in arithmetical operations.

Attempts (2 marks)

A1 Some indication of subtraction.

Percentage of selling price: (5 marks)

Blunders (-3)

- B1 As percentage of cost price.
- B2 Mishandles the calculation of profit as a percentage e.g. $\frac{16000}{1920} \times 100 = 833 \cdot 3$.
- B3 Error in decimal point.
- B4 Illegal cancellation(s) in correct method of calculation of profit as a percentage.

Slips(-1)

S1 Numerical errors in arithmetical operations. (to a max -3).

Attempts (2 marks)

- A1 Some use of 100 or of the given data or the calculated profit.
- A2 "Profit"/"Selling Price" or "Profit"/"Selling Price"×100 and stops i.e. no substitution of values.

€6000 is invested at 5% per annum.

What is the amount of the investment at the end of one year?

Æ(ii)

$$1\% = 60$$

 $5\% = 300$

Amount = €6300

$$I = \frac{P \times T \times R}{100} = \frac{6000 \times 1 \times 5}{100} = 300$$
Amount = \circ 6300

$$6000 \times 1 \cdot 05$$

= 6300
Amount = €6300

6000 @ or +5% = 300 (use of % button, calculator) ⇒ €6300 as total.

- * \in 300 (with work shown) and stops \Rightarrow 7 marks.
- * $6000 \times 5 = 30000$ and stops $\Rightarrow 4$ marks (B1 + B3).
- * $6000 \times 5 = 30000 + 6000 = 36000 \Rightarrow 7 \text{ marks (B1)}.$
- * Correct answer without work \Rightarrow 7 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Mishandles 5%, e.g. 6000×5 or $6000 \div 5$ (6000 must be used).
- B2 Error in decimal point (once only).
- B3 Stops at interest i.e. fails to calculate amount.
- B4 Subtracts to calculate amount.
- B5 Incorrect substitution into formula and continues. [say T = 2: but 6000 must be used].
- B6 Illegal cancellation(s) in $\frac{6000 \times 1 \times 5}{100}$
- B7 $6000 \times .05 = 300$ and stops.
- B8 1.05 = 1.5.

Slips(-1)

S1 Numerical errors in arithmetical operations. (to a max -3)

Attempts (3 marks)

A1 correct formula with or without substitution and stops.

A2 some use of 100 in attempt to find percentage e.g. $5\% = \frac{5}{100}$ and stops.

Helen's weekly wage is €850.

She pays income tax at the rate of 20% on the first €600 of her wage and income tax at the rate of 42% on the remainder of her wage. Helen has a weekly tax credit of €54.

Part (c) (i) 5 marks Att 2

Calculate the tax payable at the rate of 20% on the first €600 of her wage.

(i) $1\% = 6$ 20% = 120 Tax = £120.	$Tax = \frac{600}{100} \times 20 = \text{£}120$	$600 \times 0 \cdot 2 = €120.$
---	---	--------------------------------

- * Correct answer without work \Rightarrow 2 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Mishandles 20%, e.g. $600 \times 20 = 12000$ or $600 \div 20 = 30$.
- B2 Uses €850 instead of €600.
- B3 Error in decimal point.
- B4 Illegal cancellation(s) in correct method of calculation of tax.

Slips(-1)

S1 Numerical errors in arithmetical operations. (to a max -3)

Attempts (2 marks)

A1 Some use of 100 in attempt to find percentage e.g. $20\% = \frac{20}{100}$ and stops.

Part (c) (ii) 5 marks Att 2

(ii) Calculate the tax payable at the rate of 42% on the remainder of her wage.

🗷 (ii) F	(ii) Remainder of wage = $6850 - 600 = 250$		
$1\% = 2 \cdot 5$ $42\% = 105$ $Tax = €105$	$Tax = \frac{250}{100} \times 42 = \text{£}105$	250×0·42 = €105	

Blunders (-3)

- Mishandles 42%, e.g. 250×42 or $250 \div 42$. (But no penalty if the error is as in Part (c) (i)).
- B2 Uses €850 or €600 instead of €250.
- B3 Error in decimal point.
- B4 Illegal cancellation(s) in correct method of calculation of tax.

Slips(-1)

S1 Numerical errors in arithmetical operations. (to a max -3).

Attempts (2 marks)

A1 Some use of 100 in attempt to find percentage e.g. $42\% = \frac{42}{100}$ and stops.

Att 2

(iii)

Hence calculate Helen's gross tax.

(iii)

Helen's gross tax = €120 + €105 = €225

- * Incorrect answer without work \Rightarrow 0 marks.
- * Allow candidate's incorrect answers from parts (i) and (ii).

Blunders (-3)

B1 €120 – €105 = €15.

B2 Misuse of tax credit.

Slips(-1)

S1 Numerical errors in arithmetical operations. (to a $\max -3$).

Part (c) (iv) 5 marks Att 2

(iv) Calculate the tax payable by Helen.

Æ (iv)

Tax payable = €225 - €54 = €171

- * No use of tax credit \Rightarrow 0 marks.
- * Incorrect answer without work \Rightarrow 0 marks.
- * Allow candidate's incorrect gross tax figure from Part (iii).
- * 171 only \Rightarrow 2 marks.

Blunders (-3)

B1 Misuse of tax credit e.g. 225 + 54 = 279.

Slips(-1)

S1 Numerical errors in arithmetical operations. (to a max -3)

QUESTION 4

Part (a)	10(5, 5) marks	Att (2, 2)
Part (b)	20(10, 10) marks	Att (3, 3)
Part (c)	20(5, 5, 5, 5) marks	Att $(2, 2, 2, 2)$

Part (a) (i) 5 marks Att 2

(i) If x = 4, find the value of: 5x + 3

(i) 5x + 3 = 5(4) + 3 = 20 + 3 = 23

- * $20 + 3 \Rightarrow 4$ marks.
- * Correct answer without work \Rightarrow 2 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Incorrect numerical substitution for x and continues.
- B2 Leaves 5(4) in the answer.
- B3 Breaks order i.e. [5(4+3) = 35].
- B4 5(4) taken as 54.

Slips(-1)

S1 Numerical errors. (to a max -3).

Attempts (2 marks)

A1 Substitution and stops e.g. 5(4) only.

Worthless (0)

W1 Incorrect substitution for x and stops.

(ii) If x = 4, find the value of: $x^2 - x + 7$

$$x^{2} - x + 7 = (4)^{2} - 4 + 7$$
$$= 16 - 4 + 7$$
$$= 19$$

- * $16-4+7 \Rightarrow 3$ marks.
- * $16-4+7=16-11=5 \Rightarrow 4 \text{ marks}.$
- * $12 + 7 \Rightarrow 4$ marks.
- * Correct answer without work \Rightarrow 2 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Incorrect numerical substitution for x and continues.
- B2 Mishandles $(4)^2$ i.e. $(4)^2 = 8$ or leaves $(4)^2$ in answer.
- B3 Mishandles -(4) i.e. = 4.
- B4 Breaks order i.e. [16-1(4)=15(4)=60].
- B5 -1(4) taken as -1+4.
- B6 -1(4) clearly taken as -14.

Slips (-1)

S1 Numerical errors (to max - 3).

Attempts (2 marks)

- A1 Substitution and stops i.e. $(4)^2 (4) + 7$ only.
- A2 Incomplete substitution and continues or stops.
- A3 4x substituted for x in both terms with x and continues or stops.

Multiply (3x-2) by (4x+5) and write your answer in its simplest form. **(i)**

$$(3x-2)(4x+5) = 3x(4x+5) - 2(4x+5)$$
$$= 12x^{2} + 15x - 8x - 10$$
$$= 12x^{2} + 7x - 10.$$

- Correct answer without work \Rightarrow 7 marks.
- Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

B1 Each incorrect term or each term omitted on multiplication.

Slips(-1)

S1 Each incorrect term or each term omitted in final simplification. (to a max of -3)

Attempts (3 marks)

A1 Any correct multiplication.

A2 3x(4x+5) - 2(4x+5) and stops.

A3 4x(3x-2) + 5(3x-2) and stops.

Worthless (0)

 $(3x-2) \pm (4x+5)$ stops or continues. W1

W2 Adding unlike terms before attempt at multiplication. (ii) Write in its simplest form

$$(4x^2-3x+7)+(x^2-2x-8)$$

Ø

(ii)

$$(4x^{2}-3x+7)+(x^{2}-2x-8)$$

$$= 4x^{2}-3x+7+x^{2}-2x-8$$

$$= 5x^{2}-5x-1$$

- * Stops after correct removal of brackets \Rightarrow 7 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

B1 Each incorrect term or each term omitted on bracket removal.

Slips (-1)

S1 Each incorrect term or each term omitted in final simplification.(max -3)

Misreadings (-1)

M1 $(4x^2 - 3x + 7) \times (x^2 - 2x - 8)$. Apply B1 as each incorrect term or each term omitted on multiplication.

Attempts (3 marks)

A1 Any correct addition of a pair of like terms.

A2
$$(4x^2 - 3x + 7) = 4x^2 - 3x + 7$$
 only or $(x^2 - 2x - 8) = x^2 - 2x - 8$ only.

A3 Treats as equation e.g. $4x^2 - x^2 - 3x + 2x + 7 + 8$.

Worthless (0)

W1 Adding unlike terms before removal of brackets.

A rectangle has a length (x+6) cm and width x cm, as in the diagram

Part (c) (i) 5 marks Att 2

(i) Find the perimeter of this rectangle in terms of x.

(i)
$$x + x + (x+6) + (x+6) \\ 2(x+x+6) \\ 4x+12$$

- * Accept either x + x + (x + 6) + (x + 6) or 2(x + x + 6) for full marks.
- * If x + x + (x + 6) + (x + 6) present give full marks for this section, irrespective of any subsequent errors within the section.
- * Brackets as above not required, accept x + x + x + 6 + x + 6.
- * Incorrect answer without work \Rightarrow 0 marks.
- * 4x + 12 only $\Rightarrow 2$ marks.
- * 4x+12 and diagram as in Att $2 \Rightarrow 5$ marks.

Blunders (-3)

- B1 Adding only any two of the four sides required e.g. x + (x + 6).
- B2 $x \times (x+6)$ or $x \times x$ or $(x+6) \times (x+6)$.
- B3 x + x + (x + 6).
- B4 x+(x+6)+(x+6).

Slips(-1)

S1 Numerical errors. (max -3)

Attempts (2 marks)

A1
$$P = 2(L + B)$$
 or $P = (L + B)$.

A2 Diagram as over:

Worthless (0)

W1 x only or x + 6 only.

If the perimeter of the rectangle is 40 cm, write down an equation in x (ii) to represent this information.

Æ (ii)

$$4x + 12 = 40$$
.

- Accept either x + x + (x + 6) + (x + 6) = 40 or 2(x + x + 6) or 4x + 12 = 40 for full marks.
- If x + x + (x + 6) + (x + 6) = 40 present give full marks for this section, irrespective of any subsequent errors within the section.
- Accept candidate's incorrect perimeter from (c) (i) = 40 for full marks.

Blunders (-3)

 $x \times (x+6) = 40$ [if not the candidate's expression above].

Slips(-1)

S1 An x or an x + 6 omitted in transcription from part (c) (i). (max -3)

Part (c) (iii)

5 marks

Att 2

(iii) Solve the equation that you formed in part (ii) above, for x.

x + x + (x + 6) + (x + 6) = 404x + 12 = 40🗷 (iii) 4x = 40 - 124x = 28

x = 7

4x + 12 = 404x = 40 - 124x = 28

x = 7

x+x+x+x=40-6-64x = 28

x = 7

- * Candidate's equation from (ii) must be progressed to the form " $ax = \dots$ " before any marks can be earned for this section.
- $x = \frac{28}{4} \implies 4$ marks.
- Correct Equation for part (ii) may be embedded in this section and would earn full marks for part (ii) if part (ii) is incorrect or vacant.
- Correct answer without work \Rightarrow 2 marks.
- Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Error(s) in progressing equation (e.g. transposition).
- Adds 'x s to 'numbers' and continues e.g. 4x + 12 = 16x. B2

Slips(-1)

- Errors in addition (to max 3). S1
- Error in division e.g. $x = \frac{28}{4} \Rightarrow x = 6$ (say). S2
- S3 $\frac{28}{4}$ and stops.

Attempts (2 marks)

- x + x + x + x = 40 6 6 and stops. A1
- A2 4x only or 12 only appears and stops.
- A3 Correct answer from arithmetical approach.

(iv) Find the area of the square with the same perimeter as the given rectangle. Give your answer in cm².

- * Accept 100 as answer (no need for units).
- * Correct answer without work \Rightarrow 2 marks.

Blunders (-3)

B1 $l \neq 10$ and continues.

Slips (−1)

S1 Numerical errors within correct approach (max–3).

Attempts (2 marks)

A1
$$\frac{4x+12}{4}$$
 or $\frac{x+x+(x+6)+(x+6)}{4}$ and stops.

A2 Some use of 40 e.g. $(40)^2$ or $\sqrt{40}$.

Worthless (0)

W1 $7 \times 13 \text{ or } 7 \times 13 = 91.$

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20 (5, 5, 5, 5) marks	Att $(2, 2, 2, 2)$
Part (c)	20 (5, 5, 10) marks	Att $(2, 2, 3)$

Part (a) 10 marks Att 3

Solve the equation 5x - 6 = 3(x + 4)

5x - 6 = 3x + 12 (3 marks) 5x - 3x = 12 + 6 (4 marks) 2x = 18 (7 marks) x = 9 (10 marks)

- * $x = \frac{18}{2} \Rightarrow 9 \text{ marks.}$
- * Correct answer without work \Rightarrow 7 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Error in distributive law and continues, e.g. 3x + 4 or x + 12 (once only).
- B2 Each error in progressing equation (e.g. transposition).

Slips(-1)

- S1 Error in division e.g. $x = \frac{18}{2} \Rightarrow x = 8$ (say).
- S2 Numerical errors (to max 3).
- S3 $\frac{18}{2}$ and stops.

Attempts (3 marks)

- Al Adds or subtracts'x's to 'numbers' and continues e.g. $5x 6 = \pm x$ or 3(x + 4) = 3(5x) = 15x.
- A2 5x 6 = 3x + 12 and stops.
- A3 3x appears and stops.
- A4 5x = 3(x + 4) + 6 and stops.

Worthless (0)

W1 Adds or subtracts'x's to 'numbers' and stops.

(i)

Factorise

4ab + 8b

(i)

$$4b(a + 2)$$

* Accept 4(ab+2b) or b(4a+8) or 2(2ab+4b) for 5 marks.

Blunders (-3)

B1 An incorrect common factor.

B2 Stops after some correct effort at factorisation e.g. 4b(a) + 4b(2) or similar.

Slips (−1)

Numerical errors when taking out a factor e.g. 4b(a+4).

Attempts (2 marks)

A1 4(ab) and /or + 8(b) or effort at brackets.

A2 Indication of common factor e.g. 4ab + 8b.

Part (b) (ii) 5 marks Att 2

(ii) Factorise: ab + 2ac + 5b + 10c

€ (ii)	ab + 2ac + 5b + 10c a(b+2c) + 5(b+2c) (b+2c)(a+5)	ab + 5b + 2ac + 10c b(a+5) + 2c(a+5) (a+5)(b+2c)
		(u+3)(b+2c)

- * Correct answer without work \Rightarrow 2 marks.
- * Incorrect answer without work \Rightarrow 0 marks.

Blunders (-3)

- B1 Stops after first line of correct factorisation.
- B2 Error(s) in factorising any pair of terms.
- B3 Incorrect common factor and continues e.g. a(b+2c)+5(b+c)=(b+2c)(a+5). An instance of correct answer from incorrect work.

Slips(-1)

S1
$$(b+2c)\pm(a+5)$$
.

S2 Correct second line of factorisation but gives 5a(b+2c).

Attempts (2 marks)

A1 Pairing off, or indication of pairing off, and stops.

A2 Correctly factorises any pair and stops.

Part (b) (iii)

5 marks

Att 2

(iii)

Factorise: $x^2 + 2x - 15$

(iii)

$$x^{2} + 2x - 15$$

$$= x^{2} + 5x - 3x - 15$$

$$= x(x+5) - 3(x+5) \quad (2 \text{ marks})$$

$$= (x+5)(x-3)$$

$$x \longrightarrow (x+5)(x-3)$$

$$x \longrightarrow (2 \text{ marks})$$

- * Quadratic equation formula method is subject to *Slips* and *Blunders*.
- * Accept (with or without brackets) for 5 marks any of the following (x+5) and (x-3). (The word **and** is written down.) (x+5) or (x-3). (The word **or** is written down.)
- * Accept (x+5), (x-3) for 5 marks.
- * Correct answer without work \Rightarrow 5 marks.

Blunders (-3)

- B1 Incorrect two term linear factors of $x^2 + 2x 15$ formed from correct, but not applicable, factors of x^2 and ± 15 .
- B2 Correct cross method but factors not written.
- B3 x(x+5)-3(x+5) or x(x-3)+5(x-3) and stops.
- B4 Incorrect common factor and continues (applies to guide number method).

Slips(-1)

- S1 Uses quadratic equation formula, but has wrong signs in factors (once only).
- S2 Uses quadratic equation formula to find x = -5 and x = 3 and stops.
- S3 $(x+5)\pm(x-3)$.

Attempts (2 marks)

- A1 Correct factors of x^2 only.
- A2 Correct factors of -15 or +15 only.
- A3 5x 3x only appears.
- A4 Correct quadratic equation formula with or without substitution and stops.

Part (b) (iv)

5 marks

Att 2

(iv)

Factorise: $x^2 - y^2$

(iv)

$$(x+y)(x-y)$$

- * Accept (with or without brackets) for 5 marks any of the following (x+y) and (x-y). [The word **and** is written down.] (x+y) or (x-y). [The word **or** is written down.]
- * Accept (x + y), (x y) for 5 marks.

Blunders (-3)

B1 Incorrect two term linear factors of $x^2 - y^2$ formed from correct, but not applicable, factor of x^2 and $\pm y^2$.

B2 (y+x)(y-x).

Slips(-1)

Solves $x^2 = y^2$ to give x = y and x = -y and stops.

S2 $(x+y)\pm(x-y)$.

Attempts (2 marks)

A1 Correct factors of x^2 only.

A2 Correct factors of y^2 or $-y^2$ only.

A3 $x \text{ or } \pm y \text{ appears.}$

A4 $x^2 - y^2 = x \cdot x - y \cdot y$ and stops.

A5 (xy)(xy).

A6 Mention of the difference of two squares.

(i) Express
$$\frac{x+5}{4} + \frac{x+2}{3}$$
 as a single fraction.
Give your answer in its simplest form.

$$\frac{3(x+5)+4(x+2)}{12}$$

$$=\frac{3x+15+4x+8}{12}$$

$$=\frac{7x+23}{12}$$
 (5 marks)

- * Adds numerators and then denominators i.e. $\frac{x+5}{4} + \frac{x+2}{3} = \frac{2x+7}{7} \Rightarrow 0$ marks.
- * All *Blunders* and *Slips* in the simplification of the numerator subject to a max. deduction (-3).
- * $\frac{3(x+5)+4(x+2)}{12}$ and stops \Rightarrow 2 marks. (B3)
- * $\frac{3x+15+4x+8}{12}$ and stops \Rightarrow 4 marks. (S3)
- * $\frac{14x+46}{24} \Rightarrow 4$ marks. (S3)
- * $14x + 46 \Rightarrow 3$ marks. (S1and S3)

Blunders (-3)

- B1 Incorrect common denominator and continues.
- B2 Incorrect numerator from candidate's common denominator. e.g. $\frac{4(x+5)+3(x+2)}{12}$.
- B3 No simplification of numerator.
- B4 Errors in distributive law. [See * 2]
- B5 Errors in sign when multiplying. [See * 2]

Slips(-1)

- S1 Correct common denominator implied.
- S2 Numerical errors in arithmetical operations.
- S3 Not in simplest form. [See * 4].

Attempts (2 marks)

A1 12 only or a multiple of 12 only appears.

A2
$$\frac{5x}{4} + \frac{2x}{3} = \frac{15x + 8x}{12}$$
.

Worthless (0)

W1
$$\left(\frac{x+5}{4}\right)\left(\frac{x+2}{3}\right)$$
 and stops.

W2
$$\frac{6x}{4} + \frac{3x}{3}$$
 and stops or $\frac{x+5}{4} + \frac{x+2}{3} = \frac{5x}{4} + \frac{2x}{3} = \frac{7x}{7} = x$.

(ii) Hence, or otherwise, solve the equation

$$\frac{x+5}{4} + \frac{x+2}{3} = \frac{5}{2}$$

(ii)
$$\frac{7x+23}{12} = \frac{5}{2}$$

$$14x+46=60$$

$$14x=60-46$$

$$14x=14$$

$$x=1.$$

$$12(7x+23) = \frac{12(5)}{2}$$

$$7x+23=6(5)$$

$$7x+23=30$$

$$7x+23=30$$

$$7x=7$$

$$x=1$$

$$12(7x+23) = \frac{12(5)}{2}$$

$$\frac{2(7x+23)-12(5)}{12} = 0$$

$$\frac{2(7x+23)-12(5)}{12} = 0$$

$$14x+46-60=0$$

$$14x-14=0$$

$$14x-14=0$$

$$14x=14$$

$$x=1$$

$$7x=30-23$$

$$7x=7$$

$$x=1$$

- * Candidate's equation must be of the form $\frac{ax+b}{c} = \frac{5}{2}$ if full marks are to be earned for this section.
- * Correct trial and error \Rightarrow Att mark only.
- * $\frac{x+5}{4} + \frac{x+2}{3} = \frac{5x}{4} + \frac{2x}{3} = \frac{7x}{7} = x$ from (i) and then $\frac{7x}{7} = \frac{5}{2}$ or $x = \frac{5}{2} \Rightarrow 2$ marks.
- * $\frac{5x}{4} + \frac{2x}{3} = \frac{15x + 8x}{12}$ from (i) and then $\frac{15x + 8x}{12} = \frac{5}{2}$ or $\frac{23x}{12} = \frac{5}{2} \Rightarrow 2$ marks.
- * $\frac{x+5}{4} + \frac{x+2}{3} = \frac{2x+7}{7}$ from (i) and then $\frac{2x+7}{7} = \frac{5}{2}$ etc can gain full marks.
- * $\frac{x+5}{4} + \frac{x+2}{3} = \frac{5}{2} \Rightarrow 4x + 20 + 3x + 6 = 10 \text{ etc} \Rightarrow B2.$
- * $\frac{x+5}{4} + \frac{x+2}{3} = \frac{5}{2} \Rightarrow x+1\cdot 25 + x + 0\cdot 66 = 2\cdot 5 \text{ etc} \Rightarrow B2.$

Blunders (-3)

- B1 Error(s) in establishing an equation without fractions and continues.
- B2 Error(s) in progressing equation (e.g. transposition).

Slips(-1)

S1 Error in division in final step to find x.

Attempts (2 marks)

- A1 Adding unlike terms in progressing equation.
- A2 Some effort at removal of fractions.
- A3 Oversimplification e.g. 7x + 23 = 5 and continues.
- A4 Oversimplification as a result of errors in part (i).
- A5 Trial and error.

(iii) Solve for x and for y:

$$3x - y = 8$$

$$x + 2y = 5$$

Ø(iii)	3x - y = 8 $x + 2y = 5$ $6x - 2y = 16$ $x + 2y = 5$ $7x = 21$ $x = 3$ $y = 1$	3x - y = 8 $x + 2y = 5$ $3x - y = 8$ $3x + 6y = 15$ $-7y = -7$ $y = 1$ $x = 3$	y = 3x - 8 $x + 2(3x - 8) = 5$ $x + 6x - 16 = 5$ $7x = 5 + 16$ $7x = 21$ $x = 3$ $y = 1$
--------	---	--	--

- * Apply only one blunder deduction (B1 or B2) to any error(s) in establishing the first equation in terms of x only or the first equation in terms of y only.
- * Finding the second variable is subject to a maximum deduction (-3).

Blunders (-3)

- Error(s) in establishing the first equation in terms of x only [7x = 21] or the first equation in terms of y only [-7y = -7] through elimination by cancellation.
- B2 Error(s) in establishing the first equation in terms of *x* only or the first equation in terms of *y* only through elimination by substitution.
- B3 Errors in transposition in solving the first one variable equation.
- B4 Errors in transposition when finding second variable.
- B5 Incorrect substitution when finding second variable.
- B6 Finds one variable only.

Slips (-1)

S1 Numerical errors (max –3) in solving first one variable equation and when finding second variable.

Attempts (3 marks)

- A1 Attempt at transposition and stops.
- A2 Multiplies either equation by some number and stops.
- A3 Correct answers without algebraic work.

QUESTION 6

Part (a)	10 (5, 5) marks	Att (2,2)
Part (b)	30 (20, 10) marks	Att (7,3)
Part (c)	10 (5, 5) marks	Att (2,2)

Part (a) (i)			5 marks	Att 2
	(i)	f(x) = 5x - 6.	Find: $f(3)$	

		f(3) = 5(3) - 6	
Ø	(i)	=15-6	(4 marks)
		= 9	
			(5 marks)

- * Function concept correct:
 - f(3) = 5(3) 6 or f(2) = 15 6 i.e. multiplication of 3 by 5 is clearly indicated or is implied by subsequent work. Completion of f(3) subject to maximum deduction of -1.
- * Correct function concept i.e. 5(3) 6 and stops $\Rightarrow 4$ marks.
- * Ignores x giving $5-6 = -1 \implies 0$ marks.
- * $3[f(x)] = 15x 18 \implies 0$ marks.
- * Correct answer without work \Rightarrow 2 marks.

Blunders (-3)

B1 f(3) incorrect: misunderstanding of the concept of a function.

Misreadings (-1)

M1 f(-3) instead of f(3).

Slips(-1)

S1 Numerical errors (to $\max -1$).

Attempts (2 marks)

A1 Treats as equation and continues or stops.

Part (a) (ii)

5 marks

Att 2

 \angle

f(x) = 5x - 6.

f(-2)

Æ (ii)

$$f(-2) = 5(-2) - 6$$

= -10 - 6
= -16

(5 marks)

- * Function concept correct:
 - f(-2) = 5(-2) 6 or f(-2) = -10 6 i.e. multiplication of -2 by 5 is clearly indicated or is implied by subsequent work.

Completion of f(-2) subject to maximum deduction of -1.

- * Correct function concept i.e. 5(-2) 6 and stops $\Rightarrow 4$ marks.
- * Ignores x giving $5-6 = -1 \implies 0$ marks.
- * $-2[f(x)] = -10x + 12 \implies 0$ marks.
- * Correct answer without work \Rightarrow 2 marks.

Blunders (-3)

B1 f(-2) incorrect: misunderstanding of the concept of a function.

Misreadings (-1)

M1 f(2) instead of f(-2).

Slips(-1)

S1 Numerical errors and sign errors (to $\max -1$).

Attempts (2 marks)

A1 Treats as equation and continues or stops.

Draw the graph of the function

$$f: x \to x^2 + x - 3$$

in the domain $-3 \le x \le 2$,

where $x \in \mathbf{R}$.

1			
Ø	f(-3)	=	$(-3)^2 + (-3) - 3 = 3$
	f(-2)	=	$(-2)^2 + (-2) - 3 = -1$
	f(-1)	=	$(-1)^2 + (-1) - 3 = -3$
	f(0)	=	$(0)^2 + (0) - 3 = -3$
	f(1)	=	$(1)^2 + (1) - 3 = -1$
	f(2)	=	$(2)^2 + (2) - 3 = 3$

or

X	-3	-2	-1	0	1	2
x^2	9	4	1	0	1	4
x	-3	-2	-1	0	1	2
-3	-3	-3	-3	-3	-3	-3
f(x)	3	-1	-3	-3	-1	3

Table 20 marks Att 7

* Each individual error in the rows other than the f(x) row, apart from *Blunders* below, attracts a deduction of -1 subject to a maximum deduction of -3 per row. [f(x) max(-6)]

Blunders (-3)

- B1 x^2 taken as 2x all the way. [In row headed x^2 by candidate]
- B2 x taken as -x all the way. [In row headed x by candidate]
- B3 -3 calculated as -3x all the way. [In row headed -3 by candidate]
- B4 Adds in top row when evaluating f(x).
- B5 Omits '-3' row or omits 'x' row.
- B6 Omits a value in the domain each time to max of -9 (5 values missing \Rightarrow Att 7).
- B7 Each incorrect image without work.

Slips(-1)

- S1 Numerical *Slips* (to max -3) in any row other than f(x) row.
- S2 Misreads '-3' as '+3' and places '+3' in the table or '+x' as '-x' and places '-x' in the table.
- Each incorrect f(x) value calculated by addition within columns in student's table (no limit). But note B4

Attempts (7 marks)

- A1 Omits x^2 row from table or treats x^2 as x.
- A2 Table with only $f(x) = x^2$.
- A3 Any effort at calculating point(s).
- A4 One point only calculated and nothing else.

- * Att $7 + \text{Att } 3 \Rightarrow \text{ one point only calculated and graphed correctly.}$
- * Correct graph but no table \Rightarrow full marks, i.e. 30 marks.
- * Accept reversed co-ordinates (i) if axes not labelled or (ii) if axes are reversed to compensate (see B1 below).

Blunders (-3)

- B1 Reversed co-ordinates plotted against non-reversed axes (once only) [See 3rd *].
- B2 Axes not graduated uniformly (once only).
- B3 Points not joined or joined in incorrect order (once only).

Slips(-1)

- S1 Each point of candidate graphed incorrectly.
- S2 Each point from table not graphed (subject to N1).

Attempts (3 marks)

A1 Graduated axes only (need not be labelled).

Use the graph drawn in **6(b)** to estimate:

(i) the values of x for which f(x) = 0.

 $\angle (i)$

Work to be shown on graph and answers written here.

$$x = -2 \cdot 3$$
 or $x = 1 \cdot 3$

- * Correct answer (clearly consistent with graph) inside tolerance without graphical indication ⇒ 2 marks.
- * A candidate's incorrect graph can earn up to full marks for this section. [Use similar tolerances]

Blunders (-3)

- B1 Answer on diagram but outside of tolerance (± 0.25).
- B2 Fails to write down the answers.
- B3 Only one answer or indication.

Attempts (2 marks)

A1 Algebraic evaluation.

Worthless (0)

W1 Answers outside of tolerance without graphical indication.

W2 f(0) giving -3 as answer.

Use the graph drawn in **6(b)** to estimate:

(ii) the value of f(x) when x = 0.5.

Z

(ii) Work to be shown on graph and answers written here

$$f(0\cdot 5) = -2\cdot 25$$

- * Correct answer (clearly consistent with graph) inside tolerance without graphical indication ⇒ 2 marks.
- * A candidate's incorrect graph can earn up to full marks for this section. (Use similar tolerances)

Blunders (-3)

B1 Answer on diagram but outside of tolerance (± 0.25) .

B2 Fails to write down the answer.

Attempts (2 marks)

A1 Algebraic evaluation or calculator.

Worthless (0)

W1 Answer outside of tolerance without graphical indication.