NATIONAL COMMITTEE FOR MATHEMATICAL CONTESTS

SECOND INTERNATIONAL SELECTION TEST

Trinity College, Cambridge, 8th April 1990

Time allowed: Three-and-a-half hours.

- 1. Let f(n) be a function defined on the set of positive integers and having its values in the same set. Suppose that f(f(m) + f(n)) = m + n for all positive integers m, n. Find all possible values of f(1990).
- 2. The squares of an $n \times n$ chessboard $(n \ge 2)$ are labelled 1, 2, ..., n^2 in some order with every number occurring. Prove that there exist two neighbouring squares (ie. with a common edge) whose labels differ by at least n.
- 3. Given a set of points P in the xy-plane, we define a set P* according to the following rule:

 $(x^*, y^*) \in P^*$ if and only if $xx^* + yy^* \le 1$ for all $(x, y) \in P$. Find all triangles T such that T^* is obtained from T by a half-turn about the origin.