SHIIdent BOUNTY. COM

INTERNATIONAL INDIAN SCHOOL, DAMMAM

FIRST TERMINAL EXAMINATIONS, JUNE-2012

SET-B

GRADE: XI

Max Marks-100

SUBJECT: MATHEMATICS

Time - 3 hours

General Instructions

1. All questions are compulsory.

2. the question paper consists of 29 questions divided into three sections A, B, C

3, Section A contains 10 questions of 1 mark each, section B contains 12 questions of 4 marks each and section C contains 7 questions of 6 marks each.

SECTION-A (10X1=10 Marks)

- 1) If R is the set of real numbers and Q is the set of rational numbers, then what is R Q?
- 2) If power set of the set A have 32 elements, then how many elements A have?
- 3) Find the value of $\cot \frac{19\pi}{3}$
- 4) Find radian measure of 40°20'
- 5) If n (A) = m and n (B) = n, then how many relations are possible from set A to set B.
- 6) Evaluate $\lim_{x\to 0} \frac{5\tan 5x}{x}$
- 7) Find the principal solutions of $\sec x = -2$
- 8) Find multiplicative inverse of 2 + 3i
- 9) If $f(x) = x^2 1$ and g(x) = 2x + 3, find (fg)(x)
- 10) Find modulus of $\frac{1}{1-i}$

$\underline{SECTION-B\ (12X4=48\ Marks)}$

11) Solve the following inequality $6 \le -3(2x - 4)$ 12

(A) B) = A | | B and (A \cap B)' = A'UB'
(S) If
$$f(x) = \frac{1-x^2}{1-x^2}$$
, show that $f(\tan \theta) = \cos 2\theta$

14) If
$$(x + iy)^3 = u + iv$$
, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$

15) Prove in
$$\triangle ABC$$
, $\frac{b^2-c^2}{a^2} = \frac{\sin(B-C)}{\sin(B-C)}$

- 16) If P(A) = P(B), then prove that A = B.
- 17) Draw the graph of the following function

$$1 - X, x < 0$$

$$f(x) = \{ 1, x=0 \}$$

$$x + 1, x > 0$$

- 18) Solve the following equation: $tan^2x + (1 \sqrt{3})tanx \sqrt{3} = 0$
- 19) Find square root of (-5 + 12i)

OR

Convert $\frac{-16}{1+i\sqrt{3}}$ into polar form.

20) If
$$A = \{1,2,3\}$$
, $B = \{2,3,3\}$ & $C = \{4,5\}$, verify that

$$A \times (B \cup C) = (A \times B) \cup (A \times C) & A \times (B - C) = (A \times B) - (A \times C)$$

21) Evaluate
$$\lim_{x\to 0} \frac{\cos 2x - 1}{\cos 2x + 1}$$

22) Prove that
$$\frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan(A + B)$$

OR

Show that $\tan 3x \tan 2x \tan x = \tan 3x - \tan 2x - \tan x$

OR

If
$$\tan x = -\frac{4}{3}$$
 (X lies in 2nd quadrant), find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ & $\tan \frac{x}{2}$

- 25) Solve graphically: $2x+y \ge 4$; $x+y \le 3$; $2x-3y \le 6$; $x \ge 0$; $y \ge 0$
- 26) Solve the following quadratic equation:

$$X^2 - (7 - i) x + (18 - i) = 0$$

- 27) (i) Find the domain of the following function: $f(x) = \frac{x^2 + 2x + 1}{x^2 8x + 12}$
 - (ii) Find domain & range of $f(x) = \frac{3-x}{x-3}$
- 28) (i) Find derivative of $\frac{x^2 \cos x}{\sin x}$
 - (ii) Find derivative of sin 2x by first principle.
- 29) In a class of 60 students, 23 plays Volleyball, 15 plays Basketball, 20 play Football, 7 play Volleyball & Basketball, 5 play Football & Basketball, 4 play Volleyball & Football, 15 students do not play any game, find
 - (i) How many play all three games?
 - (ii) How many play only Football?
 - (iii) How many play Volleyball & Football but not Basketball?

Student Bounty.com

Student Bounty.com

INTERNATIONAL INDIAN SCHOOL, DAMMAM

FIRST TERMINAL EXAMINATIONS, JUNE-2012

SET-A

GRADE: XI

Max Marks-100

SUBJECT: MATHEMATICS

Time – 3 hours

General Instructions

1. All questions are compulsory.

- 2. the question paper consists of 29 questions divided into three sections a, B, C
- 3, Section A contains 10 questions of 1 mark each, section B contains 12 questions of 4 marks each and section C contains 7 questions of 6 marks each.

SECTION-A (10X1=10 Marks)

- 1) If R is the set of real numbers and Q is the set of rational numbers, then what is R-Q?
- 2) If power set of the set A have 16 elements, then how many elements A have?
- 3) Find the value of $\tan \frac{19\pi}{3}$
- 4) Find radian measure of 36°18'
- 5) If n(A) = 3 and n(B) = 2, then how many relations are possible from set A to set B.
- 6) Evaluate $\lim_{x\to 0} \frac{5\sin 5x}{x}$
- 7) Find the principal solutions of cosec x = -2
- 8) Find multiplicative inverse of 2-3i
- 9) If $f(x) = x^2$ and g(x) = 2x + 1, find (fg)(x)
- 10) Find modulus of $\frac{1}{1+i}$

$\underline{SECTION-B (12X4 = 48 Marks)}$

11) If P(A) = P(B), then prove that A = B.

12) Find square root of (-5 + 12i)

OR

Convert
$$\frac{-16}{1+i\sqrt{3}}$$
 into polar form.

13) Let
$$U = \{1,2,3,4,5,6,7,8,9\}$$
, $A = \{2,4,6,8\}$ & $B = \{2,3,5,7\}$, verify that $(AUB)' = A' \cap B'$ and $(A \cap B)' = A'UB'$

14) Draw the graph of the following function

$$f(x) = \begin{cases} 1 - X, & x < 0 \\ 1, & x = 0 \\ x + 1, & x > 0 \end{cases}$$

- 15) If $f(x) = \frac{1-x^2}{1+x^2}$, show that $f(\tan \theta) = \cos 2\theta$
- 16) Solve the following inequality $6 \le -3(2x 4)$ 12

17) Prove in
$$\triangle ABC$$
, $\frac{b^2-c^2}{a^2} = \frac{\sin(B-C)}{\sin(B-C)}$

- 18) Evaluate $\lim_{x\to 0} \frac{\cos 2x 1}{\cos 2x + 1}$
- 19) If A = { 1,2,3}, B = { 2,3,3 } & C = { 4,5 }, verify that A X (B U C) = (A X B) U (A X C) & A X (B - C) = (A X B) - (A X C)

20) If
$$(x + iy)^3 = u + iv$$
, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$

21) Prove that
$$\frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan(A + B)$$

Show that $\tan 3x \tan 2x \tan x = \tan 3x - \tan 2x - \tan x$

22) Solve the following equation: $tan^2x + (1 - \sqrt{3})tanx - \sqrt{3} = 0$

SECTION-C (
$$7 \times 6 = 42 \text{ Marks}$$
)

23) Prove that
$$\frac{\sin 3x + \sin 5x + \sin 7x + \sin 9x}{\cos 3x + \cos 5x + \cos 7x + \cos 9x} = \tan 6x$$

24) In any
$$\triangle$$
ABC, prove that

$$(b^2 - c^2)\cot A + (c^2 - a^2)\cot B + (a^2 - b^2)\cot C = 0$$

Student Bounty com

SECTION-C ($7 \times 6 = 42 \text{ Marks}$)

23) In any
$$\triangle ABC$$
, prove that

$$(b^2-c^2)\cot A + (c^2-a^2)\cot B + (a^2-b^2)\cot C = 0$$
OR

If
$$\tan x = -\frac{4}{3}$$
 (X lies in 2nd quadrant), find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ & $\tan \frac{x}{2}$

24) Prove that
$$\frac{\sin 3x + \sin 5x + \sin 7x + \sin 9x}{\cos 3x + \cos 5x + \cos 7x + \cos 9x} = \tan 6x$$

25) (i) Find the domain of the following function:
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

(ii) Find domain & range of -
$$f(x) = \frac{3-x}{x-3}$$

- In a class of 60 students, 23 plays Volleyball, 15 plays Basketball, 20 play
 Football, 7 play Volleyball & Basketball, 5 play Football & Basketball,
 4 play Volleyball & Football, 15 students do not play any game, find
 - (i) How many play all three games?
 - (ii) How many play only Football?
 - (iii) How many play Volleyball & Football but not Basketball?
- 27) Solve graphically: $2x+y \ge 4$; $x+y \le 3$; $2x-3y \le 6$; $x \ge 0$; $y \ge 0$
- 28) Solve the following quadratic equation:

$$X^2 - (7 - i) x + (18 - i) = 0$$

- 29) (i) Find derivative of $\frac{x^2 \cos x}{\sin x}$
 - (ii) Find derivative of sin 2x by first principle.