
SOLUTIONS A-03 APPLIED MECHANICS (June 2003) 
 

 

Q.1 a. A The resultant of any two forces, would be in the plane of these two  

   forces and must be equal, opposite and collinear with the third one.  

 

 b. D For a perfect plane truss, the relation between the number  

   of members n and the number of joints k is n = 2k -3. 

 

 c. A The total reaction must be vertically upward to balance the weight  

   of the body acting vertically downward. 

 

 d. D The magnitude of the total acceleration a = (ac
2
 + at

2
)
1/2

, where  

   centripetal acceleration ac = ω
2
r, tangential acceleration at = rω& .  

    

 e. B For the beam span l, the support reactions are R1 = - R2 = M/l. The  

   B.M. at a distance x from the support is R1x – M<x – l/2>.   

   Maximum B.M. is at the centre of the beam x = l/2, i.e. M/2. 

 

 f. D The stiffness of a close-coiled spring k = P/δ is proportional to d
4
.  

   If the diameter d is doubled the stiffness would be 2
4
 = 16 times. 

 

 g. C The vacuum pressure is the pressure below the atmospheric  

   pressure. 

 

 h. B The runner vanes of a reaction turbine are made adjustable for  

   optimizing the efficiency at part loads. 

  

Q.2.  

The F.B.D. of the ladder AB with the man at point D, a 

distance d up along the ladder is shown in Fig.2. The 

normal reaction of the floor NA and the friction force f act 

on the end A of the ladder. The normal reaction of the 

wall NB is at the end B of the ladder. The 800 N weight of 

the man acts at D. The coefficient of friction µ = tan15. 

 

The equilibrium equations for the ladder give 

Σ Fx = 0 → NB – f = 0    (1) 

Σ Fy = 0 → NA – 800 = 0   (2) 

Σ MA = 0 → 800dsinα - NB× 6cosα = 0 (3) 

f ≤ µNA = NA tan15    (4) 

 

Solving equations (1) to (4), d ≤ 6 tan15/tanα.  

For α = 30, maximum d = 6 tan15/ tan30 = 2.78 m.  

For d = 6 m, tanα ≤ tan15, i.e.  α ≤ 15
0
. 
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Q.3.  

The F.B.Ds. of the whole frame and members CD and ABC are shown in Fig.3. 

 

 

 As the end A of the frame is fixed, the reactions at A are the horizontal force HA, the 

vertical force RA and a couple CA. From the equilibrium equations of the frame 

HA = 0 , RA = 1000 N and CA = 1000×0.8 = 800 Nm. 

The member CD is a two force member and hence the forces T at the ends C and D must 

be collinear with CD. 

Considering the equilibrium of ABC and taking moment about B to eliminate the 

unknown reactions HB, RB at B from the equation, 

ΣMB = 0 → CA - T×0.9sin45 – 1000×0.1 = 0 → T = 1100 N. 

 

Q.4a.  

A circular area A of radius R in the xy plane is 

shown in Fig.4a. Consider an infinitesimal 

element of area dA = rdθdr. The second 

moment of the area I of the circular area A 

about the z axis, normal to the area and passing 

through the centre O, would be 
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Q.4b.  

Let the superscripts 1 and 2 refer to the uniform 

thin disc of radius R and the hole of radius R/2, 

respectively. Then, the coordinates of the 

centroid C of the disc with the hole would be  
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Q.5. 

The F.B.Ds. of the pulleys 1, 2 and masses A, B, C are shown in Fig.5. As the pulleys are 

light and frictionless, the tension in a string on both sides 

of a pulley would be the same. Also from the F.B.D. of 

the pulley 2, 

 

T1 = 2T2  (1) 

 

Let aA, aB, aC be the accelerations of the masses A, B, C, 

respectively and a2 the acceleration of the pulley 2. Then  

 

a2 = - aA   (2) 

aB – a2 = - (aC – a2) (3) 

 

The equations of motion for the masses A, B, C are 

 

60 – T1 = 6aA   (4) 

30 – T2 = 3aB  (5) 

20 – T2 = 2aC  (6) 

 

Solving equations (1) t0 (6),  

aA = 1.11 m/s
2
, aB = - 1.11 m/s

2 
and  aC = - 1.11 m/s

2
. 
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Q.6. 

Let d be the diameter of the rod. From strength consideration,  

σ =P/A = 1000g/(πd2
/4) ≤ σallowable = 150×10

6
 → d ≥ 0.0092 m = 9.2 mm.  

From stiffness consideration,  

δ = PL/AE = 1000g×5/[(πd2
/4)×210×10

9
] ≤ δallowable = 3×10

-3
 → d ≥ 0.01 m = 10 mm. 

Hence d = 10mm. 

Spring constant of the rod k = P/δ = 1000g/(3×10
-3

) = 10
7
/3 N/m. 

The frequency f = (1/2π)√(k/m) = (1/2π)√[(10
7
/3)/1000] = 9.19 Hz. 

 

Q.7. 

The loading on the cantilever beam and the support reactions at the built in end are as 

shown in Fig. 7.   

Considering the equilibrium of the 

cantilever, the reactions at the built in 

end A are  

RA = wb and CA = wb(L-b/2). 

Using singularity functions, the shear 

force V and the bending moment M at 

any section x are      

V = - wb + w<x - (L - b)>,     

M= -wb(L–b/2)+wbx –w<x - (L - b)>
2
/2.    

The S.F. and B.M. diagrams are also 

shown in Fig.7. 

Their maximum values are at A, x = 0,        

Vmax = -wb, Mmax = -wb(L-b/2). 

Let v be the deflection of the elastic line 

at x, EId
2
v/dx

2
 = M. Then, 

EId
2
v/dx

2
 = - wb(L–b/2) + wbx – w<x - (L - b)>

2
/2 

Integrating,  

EIdv/dx = - wb(L–b/2)x + wbx
2
/2 – w<x - (L - b)>

3
/6 + C1 

EIv = - wb(L–b/2)x
2
/2 + wbx

3
/6 – w<x - (L - b)>

4
/24 + C1x +C2. 

Using the boundary conditions v = 0 and dv/dx = 0 at x = 0 → C1= 0 and C2 = 0. 

The maximum deflection occurs at the free end B i.e. x = L, 

vmax = [- wb(L–b/2)L
2
/2 + wbL

3
/6 – w<L - (L - b)>

4
/24]/EI  = - wb(L

3
/3 – bL

2
/4 + b

3
/24). 

 

Q.8a.  

The spring is under an axial pull P. Let R be the radius of 

the coil and d be the wire diameter. The F.B.D. of one part 

of the spring cut by a section with normal along the spring 

wire is shown in Fig.8a. Any coil section is subjected to a 

direct shear force P and a moment T = PR. For a close 

coiled spring the moment T is a twisting moment. Using 

the torsion formula τ = Tr/Ip, the maximum shear stress 

due to torsion would be  

τmax = PR(d/2)/(πd
4
/32) = 16PR/(πd

3
). 
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Let n be the number of turns, G the shear modulus of the wire material and δ the 

deflection. Then the strain energy U would be 

U = Pδ/2 = T
2
L/(2GIp)  = (PR)

2
(2πRn)/[2G(πd

4
/32)]  → δ = 64PR

3
n/Gd

4
. 

 

Q.8b.  

Let d be the diameter of the solid shaft, and do, di the outer and internal diameters, 

respectively of the hollow shaft.  From the torsion formula, the torque transmitted T for 

the same maximum shear stress τmax in the shafts would be T = τmaxIp/rmax. 

For the solid shaft Tsolid = τmax (πd
4
/32)/(d/2) = τmax πd

3
/16. 

For the hollow shaft Thollow = τmax [π(do
4
 – di

4
) /32]/(do/2) = τmaxπ(do

4
 – di

4
)/(16do).   

As the shafts are of the same material length and weight, do
2
 – di

2
 = d

2
. 

Hence, the ratio Thollow/Tsolid = (do
4
 – di

4
)/d

3
do = (do

2
 + di

2
)/ddo = do/d + di

2
/ddo > 1. 

 

Q.9a.  

A cube floating in water, with its sides vertical, is shown 

in Fig.9a. Let M be the metacentre, G the centre of 

gravity and B the centre of buoyancy. If h is the height 

of immersion in water, the weight of the water displaced 

equals the weight of the cube, i.e.  

1000hb
2
 = 1000γb

3
 → h = bγ. 

BG = b/2 – h/2 = b/2 – bγ/2 = b(1 - γ)/2 

BM = I/V = b(b
3
/12)/ b

2
h = b/12γ 

MG = BM – BG = b/12γ - b(1 - γ)/2 = 0 

→ γ
2
 – γ +1/6 = 0 → γ = (1±√3)/2 = 0.789, 0.211. 

 

Q.9b.  

The velocity components u = 2x – x
2
y + y

3
/3 and v = xy

2
 -2y +x

3
/3. 

The continuity condition for an incompressible 2D flow is ∂u/∂x + ∂v/∂y = 0. 

∂u/∂x + ∂v/∂y = (2 – 2xy) + (2xy - 2) = 0. → It is a possible 2D flow. 

The irrotational flow condition for a 2D flow is ∂v/∂x - ∂u/∂y = 0. 

∂v/∂x - ∂u/∂y = (y
2
 + x

2
) - (– x

2
 + y

2
) = 2 x

2
 ≠ 0. → The flow is not irrotational. 

 

Q.10a. 

Consider a 2D inviscid steady flow in the xz plane. The gravity acts in the - z direction. A 

differential control volume with the forces acting on it is shown in Fig.10a. 

The mass in the control volume m = ρdxdydz. 

The sum of the forces in the x direction, 

∑Fx = - [p+(∂p/∂x)dx]dydz + pdydz. 

The total acceleration in the x direction,  

Du/Dt = u∂u/∂x+ w∂u/∂z. 

The equation of motion mDu/Dt = ∑Fx yields 

the Euler’s equation in the x direction, 

→ u∂u/∂x+w∂u/∂z = - (1/ρ) ∂p/∂x. 

Similarly, mDw/Dt = ∑Fz yields the Euler’s 

equation in the z direction, 

→ u∂w/∂x+w∂w/∂z = - (1/ρ) ∂p/∂z - g. 
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Q.10b. 

Let subscripts 1 and 2 refer to the inlet and outlet, respectively of the draft tube. The 

continuity equation yields the velocity at the outlet V2 as 

V2 = V1A1/A2 = 5(π×3
2
/4)/(π×5

2
/4) = 1.8 m/s. 

The Bernoulli’s equation between the inlet and outlet sections is 

p1/γ + V1
2
/2g + z1 = p2/γ + V2

2
/2g + z2 + losses.  

Hence the pressure head p1/γ at the inlet would be 

(p1/γ - p2/γ) = (z2 - z1) + (V2
2
– V1

2 
)/2g + losses = -5 + (1.8

2 
– 5

2
)/(2×9.81) + 0.1= - 6.01 m. 

 

Q.11. 

A bucket of a Pelton wheel with its inlet and outlet velocity diagrams is shown in Fig. 11. 

The bucket speed is v and the turning angle is 

θ. Let subscripts 1 and 2 refer to the inlet and 

outlet, respectively. Let u1, u2 be the absolute 

jet velocities and w1, w2 the relative 

velocities. As there is no friction,  

w2 = w1 = u1 – v. 

The peripheral jet velocity at the outlet is, 

v + w2cosθ = v + (u1 – v)cosθ. 
Force R on the jet would be 

R = ρQ[v + ( u1 – v)cosθ – u1]  

   = - ρQ(u1 – v)(1- cosθ). 
The force F on the bucket, F = - R = ρQ(u1 – v)(1- cosθ). 
The power developed P = F×v = ρQv(u1 – v)(1- cosθ). 
The input energy E = ρQu1

2
/2. The efficiency η = P/E = 2((v/u1)(1- v/u1)(1- cosθ). 

For maximum efficiency,  

dη/dv = 0. → v = u1/2, i.e. the bucket speed must be half the absolute jet speed at inlet.  
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SOLUTIONS A-03 APPLIED MECHANICS (December 2003) 
 

 

Q.1. a. A Any horizontal section of the block is subjected to a shear force.  

 

 b. B The specific speed Ns = N√P/H
5/4

 with speed N in rpm, power P  

   in kW and head H in m of a Francis turbine is from 60 to 300.  

 

 c. C T =τmaxIp/rmax→Thollow/Tsolid=Iphollow/Ipsolid =[do
4
 –(do/2)

4
]/do

4
 =15/16. 

 

 d. A The slope and deflection under the load are Wa
2
/2EI and Wa

3
/3EI.  

   Free end deflection = Wa
3
/3EI + (l- a)( Wa

2
/2EI) = (3l-a)Wa

2
/6EI. 

 

 e. B The first moment of area of a semicircle about its diameter D is 

   12/)(sin 3

2/

0 0

Drdrdr

D

=∫ ∫
π

θθ . 

 

 f. B A rigid body is in translation if all its points have the same velocity 

   V(t) (which may change with time t). Hence, it can move along a  

   straight or curved path. 

 

 g. D A point of the rigid body or its hypothetical extension, having zero  

   velocity always exists for plane motion. 

 

 h. C Due to the phenomenon of surface tension, a quantity of liquid  

   tries to minimize its free surface area. 

 

Q.2a. 

As the resultant of the three forces acting on the lever passes through O (refer Fig. 1 of 

Q.2a), the sum of their moments about O must be zero.  

∑Mo = P×250cos20 – 120×200- 80×400 = 0 → P = 238.4 N.  

The expression for the moment ∑Mo does not depend on the angle θ and consequently, 

the force P does not depend on the angle θ.  

 

Q.2b. 

Let Rx, Ry be the x, y components, respectively of the resultant R of the three forces 

acting on the eye bolt (refer Fig. 2 of Q.2b.).  

Rx = ∑Fx = 6 + 8cos45 -15cos30 = - 1.33 kN,  

Ry = ∑Fy = 8sin45 + 15sin30 = 13.16 kN. 

Hence R = (Rx
2
 + Ry

2
)
1/2 

= [(-1.33)
2
 + (13.16)

2
]

1/2 
= 13.23 kN. 

The angle θ which R makes with + x axis is  

θ = cos
-1

(Rx/R) = cos
-1

(-1.33/13.23) = 95.8
0
.
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Q.3  

Let HA, RA be the support reactions at A and RD 

the support reaction at D as shown in Fig.3(i).  

Considering the equilibrium of the whole truss, 

∑Fx = 0 → HA + 400 = 0 → HA = - 400 N.  

∑MA = 0 →12RD -9600 -1200 = 0 → RD = 900 N. 

∑Fy = 0 → RA + RD -1200 = 0 → RA= 300 N. 

The sides AG = GC = ED = √(4
2
+3

2
) = 5 m. 

Imagine the truss to be cut by a section 1-1 and 

consider the equilibrium of the portion to the left 

of the section 1-1 as shown in Fig.3(ii). The 

forces shown in the members are tensile. 

∑Fy= 0 → FAG(3/5) + RA = 0. 

→ FAG = - 500 N = 500 N (C). 

∑Fx = 0 → FAG(4/5) + FAB + HA = 0.  

→ FAB = 800 N (T). 

 

Imagine the truss to be cut by a section 2-2 as 

shown in Fig.3(iii). Consider the equilibrium of 

the portion to the left of the section 2-2.  

∑Fx = 0 → FAG(4/5) + FBC + HA = 0.  

→ FBC = 800 N (T). 

∑Fy= 0 → FAG(3/5) + FBG + RA = 0. 

→ FBG = 0. 

 

Imagine the truss to be cut by a section 3-3 and 

consider the equilibrium of the portion to the 

right of the section 3-3 as shown in Fig.3(iv). 

∑Fy= 0 → - FCE + RD = 0 

→ FCE = 900 N (T). 

∑ME = 0 → - FDC ×3 + RD×4 = 0. 

→ FDC = 1200 N (T). 

∑Fx = 0 → - FEG - FDC + 400 = 0.  

→ FEG = - 800 N = 800 N (C). 

 

Finally, imagine it to be cut by a section 4-4 and 

consider the equilibrium of the portion above the 

section 4-4 as shown in Fig.3(v). 

∑MG = 0 → - [FDE (3/5) + FCE]×4 = 0. 

 → FDE = -1500 N = 1500 N (C). 

∑ME = 0 → [FAG (3/5) +FBG +FCG (3/5)]×4 = 0.  

→ FCG  =  500 N (T). 
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Q.4.  

The F.B.Ds. of the bodies A, B and the weight W for impending motion of the bodies A 

and B down the planes are shown in Fig.4. This would correspond to the least magnitude 

of W = Wmin. 

From the equilibrium of body A, 

NA = 1000 cos20 = 939.7 N.  

TA = 1000 sin20 – 0.2 NA = 154.1 N. 

From the equilibrium of body B,  

NB = 800 cos30 = 692.8 N.  

TB = 800 sin30 – 0.25 NB = 226.8 N. 

From the equilibrium of weight W in 

the vertical direction 

Wmin = TAsin45 + TBsin60 = 305.4 N. 

For horizontal equilibrium, additional 

horizontal force is required. 

The impending motion of the bodies A 

and B up the planes correspond to the 

maximum magnitude of W = Wmax. In 

this case, the direction of frictional 

forces on both the blocks would be reversed and must act down the planes. Considering 

the equilibrium of the bodies A and B, the normal reactions remain the same. Then, 

TA' = 1000 sin20 + 0.2 NA = 530.0 N. 

TB' = 800 sin30 + 0.25 NB = 573.2 N.  

Wmax = TA'sin45 + TB'sin60 = 871.2 N. 

 

Q.5.  

Let subscripts 1 refer to the rectangular area ABGD, 2 to the triangular area DGC and 3 

to the semicircular area EFB as shown in Fig.5. Then the 

given area A would be 

A = A1 + A2 – A3. 

The moment of inertia of area A1, (IBC)1 about BC and (IAB)1 

about AB, would be 

(IBC)1 = 8×16
3
/12 + (8×16)(16/2)

2 
= 10922.7 cm

4
. 

(IAB)1 = 16×8
3
/12 + (8×16)(8/2)

2 
 = 2730.7 cm

4
. 

The moment of inertia of area A2, (IBC)2 about BC and (IAB)2 

about AB, would be 

(IBC)2 = 4×16
3
/36+ (4×16/2)(16/3)

2 
 = 1365.3 cm

4
. 

(IAB)2 = 16×4
3
/36 + (4×16/2)(8+4/3)

2 
 = 2816 cm

4
. 

The moment of inertia of area A3, (IBC)3 about BC and (IAB)3 

about AB, would be  

(IBC)3 = (π×4
4
/4)/2 + (π×4

2
/2)×4

2
 = 502.7 cm

4
. (IAB)3 = (π×4

4
/4)/2 = 100.5 cm

4
. 

The moments of inertia for the area A, IBC about BC and IAB about AB, would be 

IBC = (IBC)1 + (IBC)2 - (IBC)3 = 10922.7  + 1365.3 - 502.7 = 11785.3 cm
4
. 

IAB = (IAB)1 + (IAB)2 - (IAB)3  = 2730.7 + 2816 - 100.5 = 5446.2 cm
4
. 

 

 

A
B

W= Wmin

20
0

30
0

45
0

60
0

TA TB 

TA 

  TB 

NB 

1000N 

NA 

0.2NA 

0.25NB 

F.B.D. of A F.B.D. of B 

F.B.D. of W 

Fig.4 

800N 

A D 

B C

E 

G 

F

8 cm 4 cm 

16 cm 

4 cm 

Fig.5 

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com


Q.6.  

Let the common velocity after impact be V. The conservation of momentum yields, 

(800+500)V = 800×12 + 500×9 → V = 10.9 m/s. 

The loss of kinetic energy (K.E.) due to impact would be 

Initial K.E. – Final K. E. = 800×12
2
/2 + 500×9

2
/2 - (800+500)(10.9)

2
/2 = 623.5 J. 

 

Q.7.  

The F.B.D. of the beam is shown in Fig 7. Considering the equilibrium of the beam, 

∑MA = 7RD – (4×2)×7 -5×3 –5 = 0. 

→ RD = 76/7 = 10.9 kN. 

∑Fy= 0 → RA + RD -5 - 4×2. 

→ RA = 15/7 = 2.1 kN. 

The S.F. V and B.M. M at various 

sections is: 

0 ≤ x ≤ 3m 

V = - 2.1, M = 2.1x. 

3m ≤ x ≤ 5m 

V = - 2.1 + 5 = 2.9,  

M = 2.1x + 5 - 5(x - 3). 

5 m ≤ x ≤ 7 m 

V = - 2(x - 9) + 10.9,  

M = - 2(9 - x)
2
/2 + 10.9(7 - x). 

7 m ≤ x ≤ 9 m 

V = - 2(x - 9),  

M = - 2(9 - x)
2
/2. 

9 m ≤ x ≤ 11 m 

V = 0, M = 0. 

The S.F. and B.M. diagrams are 

also shown in Fig.7. 

The maximum S.F.  

Vmax = 6.9 kN at D, i.e. x = 7 m. 

The maximum B.M. Mmax = 11.3 kNm at B, i.e. x = 3 m. 

From, M = - 2(9 - x)
2
/2 + 10.9(7 - x) = 0, →  x = 6.36 m, is the point of contraflexure.  

 

Q.8.  

Let do be the outside diameter and di = 0.6 do the inside diameter of the shaft.  

The polar moment of inertia Ip= π (d0
4
- di

4
)/32 = πdo

4
(1- 0.6

4
)/32 = 0.0272πdo

4
. 

Using the torsion formula, from stiffness consideration, 

θ = TL/GIp = 25000×3/[85×10
9
×0.0272πdo

4
] ≤ 2.5π/180. 

→ do
4
 ≥ 25000×3×180/[85×10

9
×0.0272π×2.5π] → do ≥ = 0.124 m = 12.4 cm. 

Using the torsion formula, from strength consideration, 

τmax = Trmax/Ip = 25000(do/2)/[ 0.0272πdo
4
] ≤ 90×10

6
 

→ do
3
 ≥ 25000/[2×90×10

6
×0.0272π] → do ≥ 0.118 m = 11.8 cm. 

Hence, do = 12.5 cm should be selected. Then, di = 0.6 do = 7.5 cm.   
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Q.9a.  

Consider a vertical surface BD in the xz plane, submerged 

in a liquid with free surface at atmospheric pressure po as 

shown in Fig.9a.  

The relation between the pressure p at a depth z in a static 

incompressible fluid of density ρ is  

p = po + ρgz. 

The force dF on an elemental area dA would be dF = pdA. 

The resultant force FR = ∫A pdA = = poA + ρg∫AzdA. 

If C is the centroid of the area A, ∫AzdA = zCA.  

The pressure  at the centroid C, pC = po + ρgzC . Then, 

FR = poA + ρgzCA = (po + ρgzC) A = pCA.  

The resultant force FR acts at the centre of pressure P(xP, zP) such that the moment of the 

resultant FR about the x and z axes must be the same as the moment of the distributed 

pressure loading on the surface. 

zPFR = zP pCA =∫AzdF = ∫AzpdA = ∫Az(po + ρgz)dA = pozCA + ρg∫Az
2
dA  

As ∫Az
2
dA = Ixx, the moment of inertia of the area A about the x axis,  

zP pCA = pozCA + ρgIxx. → zP = (pozCA + ρgIxx)/pCA. 

xPFR = xP pCA =∫AxdF = ∫AxpdA = ∫Ax(po + ρgz)dA = poxCA + ρg∫A x zdA 

As ∫AxzdA = Ixz, the product of inertia about the x,z axes,  

xP pCA = poxCA + ρgIxz. → xP = (poxCA + ρgIxz)/pCA. 

 

Q.9b.  

Consider an inclined surface BD in the xz plane at an 

angle θ to the horizontal, submerged in a liquid with 

free surface at atmospheric pressure po as in Fig.9b. The 

relation between the pressure p at a depth z in a static 

incompressible fluid of density ρ is  

p = po + ρgh = ρgzsinθ. 

The force dF on an element dA would be dF = pdA. 

The resultant FR = ∫A pdA =  poA + ρgsinθ∫AzdA. 

If C is the centroid of the area A, ∫AzdA = zCA. 

The pressure  at the centroid C, pC = po + ρgzCsinθ. 

Then, FR = poA + ρgzCsinθA = (po + ρghC) A = pCA.  

The resultant force FR acts at the centre of pressure P(xP, zP) such that the moment of the 

resultant FR about the x and z axes must be the same as the moment of the distributed 

pressure loading on the surface. 

zPFR = zP pCA =∫AzdF = ∫AzpdA = ∫Az(po + ρgzsinθ)dA = pozCA + ρgsinθ∫Az
2
dA  

As ∫Az
2
dA = Ixx, the moment of inertia of the area A about the x axis,  

zP pCA = pozCA + ρgsinθIxx. → zP = (pozCA + ρgzsinθIxx)/pCA. 

xPFR = xP pCA =∫AxdF = ∫AxpdA = ∫Ax(po + ρgzsinθ)dA = poxCA + ρgsinθ∫A x zdA 

As ∫AxzdA = Ixz, the product of inertia about the x,z axes,  

xP pCA = poxCA + ρgsinθIxz. → xP = (poxCA + ρgsinθIxz)/pCA. 
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Q.10.  

The stream function ψ = 3x
2
 – y

3
. 

The velocity component u in the x direction, u = ∂ψ/∂y = - 3y
2
. 

The velocity component v in the y direction, v = - ∂ψ/∂x = - 6x. 

The velocity components at the point P(3,1) are uP = -3 and vP = - 18. 

Hence at the point (3,1), the velocity vector v = -3i - 18j.  

Magnitude v = √(3
2
 +18

2
) = 18.25, inclination with x axis θ = tan

-
1(18/3) -180 = -99.5

0
. 

 

The flow is derived from a stream function and hence is a possible 2D flow. The stream 

function ψ = 3x
2
 – y3 does not satisfy the Laplace equation,  

∂
2
ψ/∂x

2
 + ∂

2
ψ/∂y

2
 = 6 – 6y ≠ 0. Therefore, the flow is not irrotational and the potential 

function would not exist for this flow. 

 

Q.11.  

The continuity equation between the inlet section 1 and the outlet section 2 is, 

Q = A2V2 = A1V1 = (π×6
2
/4

 
)×15 = 424.115 m

3
/s. 

→ V2 = Q/A2 = 424.115/ (π×4.8
2
/4) = 23.4375 m/s. 

The Bernoulli’s equation between the inlet sections 1 and the outlet section 2 would be  

P2/ρg + V2
2
/2g + z2 = P1/ρg + V1

2
/2g + z1. 

→ P2 = P1 + ρ(V1
2
  - V2

2
)/2 + (z1 – z2)  

= 282×10
3
+ 0.9×10

3
(15

2
 – 23.4375

2
)/2 = 136.1×10

3
 Pa = 136.1 kPa. 

The gage pressure at the inlet and outlet are, 

Pg1 = 282 – 101.325 = 180.675 kPa and Pg2 = 136.1 – 101.325 = 34.775 kPa. 

The momentum equation in the x direction yields: 

- Fx + Pg1A1 – Pg2A2cos60 = ρQ(V2cos60 - V1).  

→ Fx = Pg1A1 – Pg2A2cos60 - ρQ(V2cos60 - V1) 

= 180.675×10
3
(π×6

2
/4) - 34.775×10

3
(π×4.8

2
/4)cos60  

– 0.9×10
3
×424.115(23.4375cos60 -15) = 6046.3×10

3
 N = 6046.3 kN. 

The momentum equation in the y direction yields: 

Fy – Pg2A2sin60 = ρQV2sin60. 

→ Fy = Pg2A2cos60 + ρQV2sin60 

 = 34.775×10
3
(π×4.8

2
/4)sin60 + 0.9×10

3
×424.115× 23.4375sin60 

= 8292.6×10
3
 N = 8292.6 kN. 
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SOLUTIONS A-03 APPLIED MECHANICS (June 2004) 
 

 

Q.1.  a. C The resultant force magnitude R = (P
2 

+ P
2 

+ 2PP
 
cos120)

1/2
 = P.  

   Hence, the acceleration magnitude = R/m = P/m. 

  

 b. C The simplest resultant of a system of parallel forces is either a  

   force or a couple. 

 

 c. B The block is in equilibrium, i.e. ∑Fh=0. The  frictional force must  

   be equal and opposite to the applied force P/2. 

 

 d. D The second moment of area of a square area about any centroidal  

   axis in the plane of the area is the same, i.e. b
4
/12. 

 

 e. A The total distance traveled d = 20 + 20 = 40 km. the time to travel t 

   = 20/20 + 20/60 = 4/3 h. average speed = d/t = 40/(4/3) = 30 km/h. 

 

 f. B The nominal stress = load/original area of cross-section is   

   maximum at the ultimate load. 

 

 g. D The B.M. is constant. The curvature d
2
v/dx

2 
= M/EI = constant.  

   Hence, the deflection v would have a quadratic variation. 

 

 h. A A manometer connected to a pipeline is used to measure the static  

   pressure. 

 

Q.2.  

The F.B.Ds. of the sphere B and the cylindrical tube C are as shown in Fig.2. The forces 

on the sphere B are its weight W, the radial reaction P from the tube C and the reaction Q 

from the sphere A along the common normal. From the geometry of the spheres inside 

the tube, 2R = 2r + 2rcosθ → cosθ = (R - r)/R. 

Considering the equilibrium of sphere B,  

P = Qcosθ and W = Qsinθ → P = W/tanθ. 

The tube C would be subjected to its weight 

WC, the radial reactions P and P' from the 

spheres B and A, respectively and the 

vertical reactions N1, N2 from the horizontal 

table. From the force equilibrium equation 

in the horizontal direction,  

P' = P = W/tanθ. 

At impending clockwise tipping of the tube, 

the vertical reaction N1 vanishes, i.e. N1 = 0. 

Considering the moment equilibrium about the point of application of N2, 

WC×R - P×2rsinθ < 0 → r/R < (1- WC/2W). 

B

 W 

P 
Q

θ 

C P 

 P' 

N1 N2 

 WC 

Fig.2 

F.B.D of Sphere B F.B.D. of Tube B 

2R 

r 
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Q.3.  

The F.B.D. of the truss is shown in Fig.3(i). As the 

support A is hinged, the reaction at A has both a 

horizontal component HA and a vertical component, 

RA. At the roller support C, the reaction RC is 

vertical. The equilibrium equations of the truss,  

∑Fx = HA + 80 = 0 → HA = - 80 kN. 

∑MA = RC×8 - 80×3 - 40×4 = 0 → RC = 50 kN. 

∑Fy = RA + RC - 40 = 0 → RA = - 10 kN. 

Also tanθ = 3/4. → sinθ = 3/5, cosθ = 4/5.  

The tensile force (T) in a member would be given a positive sign. Consider the 

equilibrium of the joints whose F.B.Ds are shown in Figs.3(ii) to (vi). 

Consider Joint A: 

∑Fx = FAB + HA = 0 → FAB = - HA = 80 kN (T). 

∑Fy = FAF + RA = 0 → FAF = - RA = 10 kN (T). 

Consider Joint F: 

∑Fx = FEF cosθ + FBF cosθ = 0 → FEF = - FBF 

∑Fy = -FAF  + FEF sinθ - FBF sinθ = 0 

→FEF = FAF/2sinθ = 8.3 kN(T),  

FBF = - 8.3 kN, i.e. 8.3 kN(C). 

 

 

 

 

 

 

 

 

 

 

Consider Joint E: 

∑Fx = FDE cosθ – FEF cosθ = 0. → FDE = FEF = 8.3 kN(T). 

∑Fy = -FBE  - FDE sinθ – FEF sinθ – 40 = 0. →FBE = -50 kN, i.e. 50 kN(C). 

Consider Joint D: 

∑Fx = -FDE cosθ – FBDcosθ + 80 = 0. → FBD = 275/3 = 91.7 kN(T) 

∑Fy = -FCD  + FDE sinθ – FBD sinθ = 0 → FCD = -50 kN, i.e 50 kN(C). 

Consider Joint C: 

Considering the equilibrium equation of the joint C in the x direction, ∑Fx = - FBC = 0. 

The member BC is a zero force member.  

 

Q.4.  

The unequal Z section is divided into three parts 1, 2, 3 as shown in Fig.4. The area of the 

Z section is A and xc, yc are the coordinates of its centroid. Let Ai refer to the area and xi, 

yi the coordinates of the centroid of its i
th 

part.  

xc = ∑Aixi/∑Ai = [20×5 + 24×1 + 12×(-1)]/ (20 + 24 + 12) = 112/56 = 2 cm. 

yc = ∑Aiyi/∑Ai = [20×1 + 24×8 + 12×15)]/ (20 + 24 + 12) = 392/56 = 57/8 = 7 cm. 

A B C

D 

E

F

4m 4m 

3m 

6m 

RA RC 

HA 

40 kN 

80 kN 

Fig.3(i) 

x 

y 

θ 

A 
x 

y 

HA 

RA 

  FAF 

FAB 

Fig.3(ii) Joint A 

D
x 

y 
  FDE 

Fig.3(v) Joint D 

FBD 

80kN            

N

θ 

  FCD 

F
x 

y 
FEF 

Fig.3(iii) Joint F 

FBF FAF 

θ 

E

40kN 

FEF FDE 
FBE 

x 

y 

Fig.3(iv) Joint E 

θ 
C

50kN 

FBC 

FCD
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y 

Fig.3(vi) Joint C 
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Let I
c
xx and I

c
yy be the second moment of area of 

the Z section about centriodal axes through C 

parallel to the x,y axes.  

I
c
xx = ∑(I

c
xx)i = ∑[bihi

3
/12 + Ai(yi – yc)

2
] 

= 10×2
3
/12 + 20(1 - 7)

2
  

+ 2×12
3
/12 + 24(8 - 7)

2
 

 + 6×2
3
/12 + 12(15 - 7)

2
     

= 1810.67 cm
4
. 

I
c
yy = ∑(I

c
yy)i = ∑[hibi

3
/12 + bihi(xi – xc)

2
] 

= 2×10
3
/12 + 20(5 - 2)

2
  

+ 12×2
3
/12 + 24(1 - 2)

2
 

 + 2×6
3
/12 + 12(-1 - 2)

2
     

= 522.67 cm
4
. 

The polar moment of the area I
c
zz about an axis 

through C, would be  

I
c
zz = I

c
xx + I

c
yy = 1810.67 + 522.67 = 2333.3 cm

4
. 

 

Q.5a.  

The train starts from rest, i.e. initial speed u = 0. It moves with uniform tangential 

acceleration at and reaches a speed v1 = 36 km/h in a distance s1 = 0.6 km. Therefore, 

using the relation v
2
 = u

2
 + 2ats, 

 at = v1
2
/2s1 = 1080 km/h

2
. 

The speed v2 at the middle of the distance s2 = 0.3 km, would be  

v2 = √(2ats2) = √648 = 25.456 km/h. 

The centripetal acceleration an2 at the mid-distance s2 is an2 = v2
2
/R = 810 km/h

2
. 

The total acceleration a = √(an
2
 + at

2
) = √(810

2
 + 1080

2
) = 1350 km/h

2
. 

 

Q.5b.  

Let v1' and v2' be the velocities of spheres of m1 and m2, respectively, just after impact.  

The momentum is conserved,  

m1v1' + m2v2' = m1v1 + m2v2 → m2(v2' – v2) = m1(v1 – v1') (1) 

As the impact is perfectly elastic, the velocity of separation = the velocity of approach,  

v2' - v1' = v1 - v2 → v2' + v2 = v1 + v1'    (2) 

Multiplying equations (1) and (2), 

m2(v2'
2

 – v2
2
) = m1(v1

2
 – v1'

2
) → m1v1'

2
 + m2v2'

2
 = m1v1

2
 + m2v2

2
. → (K.E.)final = (K.E.)initial. 

Thus, the kinetic energy is conserved.  

 

Q.6.  

The F.B.D. of the cylinder is shown in Fig. Q.6.The forces on the 

cylinder are the weight mg, normal reaction N and the frictional 

force f.  

Let ac be the acceleration of the centre C parallel to the plane and  

α the angular acceleration of the cylinder.  

 

 

  °C 
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2cm 
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y 

O 

Fig.4 
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2
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As there is no slip, 

ac = αR.  (1) 

The equations of motion parallel to the plane and for rotation are 

mgsinθ – f = mac. (2) 

fR = Iα = (mR
2
/2)α. (3) 

From equations (1) to (3), α = 2gsinθ/3R, ac = 2gsinθ/3, and f = mgsinθ/3. 

As the centre of mass C has no acceleration normal to the plane, N = mgcosθ and the 

frictional force f ≤ µN,     

mgsinθ/3 ≤ µmgcosθ → tanθ ≤ 3µ. 

 

Q.7a.  

As the pin is in double shear, for determining the diameter d of the pin,  

τ ≤ Pmax/(2πd
2
/4) → d ≥ (2Pmax/πτ)

1/2
 = [2×78.5×10

3
/(π×80×10

6
)]

1/2
 = 0.025 m = 25 mm. 

For the tension member,  

 σ ≤ Pmax/[(b – d )t] = Pmax/(d t), as b = 2d. 

 → t ≥ Pmax/(σ d) = 78.5×10
3
/(157×10

6 
×0.025) =  0.020 m = 20mm. 

 

Q.7b.  

Consider a V notch with an angle θ as shown in Fig. 

7b. The liquid is at a level H above the base point. 

The discharge dQ through an elementary strip of 

depth dh at a depth h below the free liquid level 

would be 

dQ = VdA = √(2gh)bdh. 

The discharge Q through the whole notch would be 

bdhghQ

H

∫=

0

)2( . 

For a V notch, b = 2(H – h)tan(θ/2). Hence, 

dhhhHgQ

H

∫ −=

0

2/1)(2)2/tan(2 θ  

.2)2/tan()15/8(])5/2()3/2[(2)2/tan(2 .2/5

0

2/52/3 HghHhgQ H
θθ =−=  

 

Q.8.  

Let di and do be the internal and external diameters, respectively of the shaft. The polar 

moment of the cross-sectional area would be Ip = π(do
4
 – di

4
)/32.  (1) 

Using the torsion formula, from stiffness consideration, θ = TL/GIp.  (2) 

Using the torsion formula, from strength consideration, τmax = T(do/2)/Ip.  (3)  

Eliminating Ip From equations (2) and (3),  

do = 2τmaxL/(Gθ) = 2×82×10
6
×2.5/(82×10

9
×2π/180) = 0.144 m = 14.4 cm.  (4) 

Using equations, (1), (2) and (4), 

di
4
 ≤ do

4
 - 32Ip/π = (32TL/Gθ/π) =32×25000×2.5/(82×10

9
×π/90×π)  

→ di = 0.118 m = 11.8 cm. 

 

 

H 

h

dh

b

θ/2 

Fig.7b 

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com


Let d be the diameter of the solid shaft. Then, Ip = π d
4
/32. 

From stiffness consideration, θ ≤ TL/GIp = 32TL/(Gπd
4
) 

→ π/90 ≤ 32×25000×2.5/(82×10
9
× π d

4
) → d ≥ .123m =12.3cm. 

From strength consideration, τmax ≤ T(do/2)/Ip = 16T/(πd
3
). 

82×10
6
 ≤ 16×25000/(πd

3
) → d ≥ .116 m = 11.6 cm. 

Hence d = 12.3 cm. 

The % increase in weight = 100[d
2
 – (do

2
 – di

2
)]/(do

2
 – di

2
)  

= 100[12.3
2
 – (14.4

2
 – 11.8

2
)]/(14.4

2
 – 11.8

2
) = 122.1 

 

Q.9.  

The beam with the loading and support reactions is shown in Fig.9. From the equilibrium 

equations of the beam,  

∑MB = RA×L – (wL/2)L/4 = 0 → RA = wL/8. 

∑Fy= RA + RB  + wL/2 = 0 → RB = 3wL/8. 

The S.F. V at any section x of the beam, 

using singularity functions would be, 

V = - wL/8 + w<x - L/2>. 

The S.F. diagram is also shown in Fig. 9. 

The maximum S.F.  

Vmax= 3wL/8 at the right support, x = L. 

V = - wL/2 + w<x - L/2> = 0 at x = 5L/8. 

 

The B.M. M at any section x is  

M = (wL/8)x + w<x - L/2>
2
/2 . 

The B.M.diagram is also shown in Fig.9. 

The maximum B.M.  

Mmax = 9wL
2
/128 at x = 5L/8. 

 

The maximum bending stress σmax in the 

beam would be at x = 5L/8 at the top and 

bottom fibers, y = ± h/2. 

| σmax| = Mmax(h/2)/I 

= (9wL
2
/128) (± h/2)/(bh

3
/12) 

= 27wL
2
/(64bh

2
). 

 

Q.10a.  

The F.B.D. of the wooden block is shown in Fig. 

10a. Assume the length of the block normal to 

the plane of paper to be unity. At the pivot A, it 

is subjected to the reactions R and H. The weight 

W acts at the centre of gravity G. It is also 

subjected to a linear pressure distribution on the 

left from 0 at D to pB at B and a constant 

pressure distribution pB at the bottom from B to 

A. Let γ be the specific gravity of the wood. 

Take the density of water ρ = 1000 kg/m
3
. Then, 

A 
B

L/2 L/2 

  b 

 h 

x 

x 

y 

x 

V 

M 

RA RB 

-wL/8 

3wL/8 

wL
2
/8 

5L/8 

9wL
2
/128 
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S.F. D. 

B.M. D. 

Fig.9 

W 

L/2 
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pB 
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H 
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W = γρgL
2
 = 1000(1.2)

2γg = 1440γg. 

pB = ρgh = 1000(0.6)g = 600g. 

Considering the moment equilibrium about the pivot A, ∑MA = 0. 

→ W×0.6 – (p×0.6/2)×0.6/3 - (p×1.2)×0.6 = 0. 

→1440γg×0.6 - (600g×0.6/2)×0.6/3 - (600g ×1.2)×0.6 = 0. → γ = 0.542. 

 

Q.10b.  

Let the subscripts i and o refer to the nozzle inlet and outlet, respectively. Applying the 

continuity equation for incompressible flow, 

Q = AiVi = AoVo = 50×0.02 = 1→ Vi = AoVo/Ai = 0.02×50/0.1 = 10 m/s. 

Now applying the Bernoulli’s equation between the nozzle inlet and outlet, 

pi/ρg + Vi
2
/2g + zi = po/ρg + Vo

2
/2g + zo,  

the gauge pressure (pi - po) at the inlet would be, 

(pi - po) = ρ(Vo
2 

- Vi
2
)/2 + ρg(zo - zi) = 1.23×(50

2
 – 10

2
)/2 + 0 = 1476 Pa = 1.476 kPa. 

If R is the axial force required to hold the nozzle in place, 

R + (pi - po) Ai = ρQ(Vo - Vi)  

→ R  = ρQ(Vo - Vi) - (pi - po) Ai = 1.23×(50 – 10) - 1476×0.1 = - 98.4 N. 

 

 

Q.11.  

The inlet and outlet velocity triangles are as shown in Fig.11. Let subscripts 1 and 2 refer 

to the inlet and outlet diagrams, respectively. As water enters 

the runner blades in the radial direction and leaves the runner 

blades axially,  

Vf1 = Vr1 and Vf2= V2. 

From the inlet velocity triangle, 

u1 = Vf1/tanα = 8/tan15 = 29.856 m/s = Vw1. 

Let D1 and D2 be the inlet and outlet diameters of the runner. 

As u1 = πD1N/60 → D1 = 60×29.856/(π×350) = 1.629 m. 

D2 = 0.6D1 = 0.977 m. 

The head applied  

H = Vw1u1/g + V2
2
/2g =(29.856)

2
/9.81 + 8

2
/(2×9.81) = 48.69 m. 

From the outlet velocity diagram, tanβ = Vf2/u2.  

The flow velocity is constant, Vf2 = 8 m/s, and the blade velocity at the outlet u2 = 0.6u1. 

Hence, the blade angle at outlet β = tan
-1

[8/(0.6×29.856)] = 24.06
0
. 

The discharge Q = K(πD1b1)Vf1 = 0.95(π×1.629×0.1×1.629)×8 = 6.34 m
3
/s. 

The power output P = ρQVw1u1 =1000×6.34×29.856×29.856 = 5651000 W = 5.651 MW. 

 

 

 

 

 

 

 

 

 

V1 

u1=Vw1 

Vf1=Vr1 

Vr2

u2 

Vf2=V2 
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0 

β 
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SOLUTIONS A-03 APPLIED MECHANICS (December 2004) 
 

 

Q.1. 

 a.  D Force, velocity and Linear momentum all follow the parallelogram 

   law of addition.       

  

 b.  A At the top of the trajectory, the speed is vcosθ and centripetal  

   acceleration g. Hence radius of curvature R = (vcosθ)
2
/g. 

 

 c. B As the impact is perfectly elastic the kinetic energy is conserved.  

   The impulse from the fixed plane changes the momentum.   

        

 d. C Force = md
2
x/dt

2 
= md

2
(Asinωt)/dt

2
 = - mAω

2
sinωt. Hence, the  

   maximum force = mAω
2
. 

 

 e. A Yield stress is a material property.  

 

 f. D As the bending moment is maximum under the load, the curvature          

   is also maximum there.  

 

 g. C Froude number is (inertia force/gravity force)
1/2

.   

  

 h. B The energy gradient represents the total head  and the hydraulic  

   gradient line the pressure and datum head only.    

 

Q.2a. 

FR = (ΣFx) i + (ΣFy)j =100 i - 75 j N.        

Equating the moment of the resultant and the given force system about O, 

xRi × FR = 50k + 2.5i × (-75)j + 0.4j × 100i         

→ -75xRk = 50k – 187.5k – 40k = -177.5k → xR = 2.37 m.      

 

Q.2b. 

The F.B.D. of the unit length of the dam is shown in Fig.2b. It is 

subjected to its own weight υ1ah, the linearly increasing pressure 

on the left from 0 at the top to υh at the bottom, the shear force F 

and the normal reaction N from the foundation.  

Considering the equilibrium of the dam, 

ΣFx = (υh)h/2 -F  = 0  → F = υh
2
/2.               

ΣFy = N – υ1ah = 0 → N = υ1ah.                                 

ΣMA = NxN – (υ1ah)a/2 – (υh
2
/2)h/3 = 0.   

→ xN = a/2 + υh
2
/(6υ1a).  

                 

 

 

a 

h

 A  B 
υh 

υ1ah 

F 

x 

 N    xN 

y 

Fig.2b 
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Q.3a. 

Consider the equilibrium of the portion of the truss to the right of the section XX as 

shown in Fig.3a. The forces acting on this portion are the 

500 N loads at D, C and the tensile forces of the sectioned 

members FGF, FBF and FBC.    

Taking moment of all the forces about D 

ΣMD = 10×FBF +5×500 = 0  

→ FBF = -250 N, i.e. 250 N (C).    

Taking moment about F 

 ΣMF = -10sin30
0
×FBC -5×500 - 10×500 = 0  

→ FBC = - 1500 N, i.e. 1500 N(C).    

   

 

Q.3b. 

There is inevitable play between the column and the collar and 

hence the collar will be in contact with the column at A and B. 

The F.B.D. of the collar is as shown in Fig.3b with load P, 

normal reactions NA, NB and frictional forces fA, fB.  

At impending slip  fA = µNA, fB = µNB.  

Considering the equilibrium of the collar, 

ΣFH = - NA + NB = 0 → NA = NB = N. Hence, fA = fB = f = µN. 

ΣMC = NBa – fA(x + b/2) - fB(x - b/2) = 0. → Na – 2fx =0. 

Hence x = a/2µ.          

    

 

Q.4. 

 

The channel section is divided in parts 1, 2, 3 as shown in 

Fig.4. Let ai be the area and xi, yi the coordinates of the 

centroid Ci of the i
th

 part. C is the centroid of the Channel 

section. Then, 

xC = (a1x1 + a2x2 + a3x3)/(a1 + a2 + a3)   

    = (8×5 + 48×2 + 4×5)/(8 + 48 + 4) = 2.6 cm.  

yC = (a1y1 + a2y2 + a3y3)/(a1 + a2 + a3)  

    = (8×2 + 48×6 + 4×11)/( 8 + 48 + 4) = 5.8 cm.   

Let I
C

xx and I
C

yy be the second moments of area about the x, y 

axes through C. Then, 

I
C

xx = ∑[bihi
3
/12 + ai(yi – yC)

2
] 

= (2×4
3
/12) + 8(2 – 5.8)

2
 + (4×12

3
/12) + 48(6 – 5.8)

2
 + 

(2×2
3
/12) + 4(11– 5.8)

2
 

= 813.6 cm
4
. 

I
C

yy = ∑[hibi
3
/12 + ai(xi – xC)

2
] 

= (4×2
3
/12) + 8(5 – 2.6)

2
 + (12×4

3
/12) + 48(2 – 2.6)

2
 + (2×2

3
/12) + 4(5 – 2.6)

2
 

= 154.4 cm
4
.          

Polar moment of area about the axis through centroid I
C

zz = I
C

xx + I
C

yy= 968 cm
4
   

 500 N 

5m 5m

C

D 30
0 
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F E

 X 
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X
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Q.5a. 

Tangential acceleration in the positive x direction is at = 3 m/s
2
.           

Centripetal acceleration in the positive y direction is an = V
2
/R = 4

2
/4 = 4 m/s

2
.   

The total acceleration vector a = 3i + 4j m/s
2
.            

 
Magnitude a = √(3

2
 + 4

2
) = 5 m/s

2
 at angle θ = tan

-1
(4/3) = 53.1

0
 with the x axis.  

 

Q.5b. 

The initial velocity of the car is Vi1 = 8 km/h = 8×1000/3600 = 20/9 m/s. 

As the impact with the rigid wall is perfectly plastic, the final velocity Vf1 = 0.   

Energy absorbed by the bumper during impact Eb= mVi1
2
/2 = 1100(20/9)

2
/2 = 2716 J.       

 

Let U be the maximum initial speed of the moving car at which it can hit a similar 

stationary car without causing any damage. As the impact is perfectly plastic, the 

common velocity after impact would be V for both the cars.  

 From linear momentum conservation: 1100U = 1100V + 1100V → V = U/2.      

Initial kinetic energy KE1 = 1100U
2
/2.       

Kinetic energy after impact KE2 = (1100 +1100)V
2
/2 = 1100U

2
/4.                       

Energy to be absorbed by the bumpers during impact = KE1 - KE2 = 1100U
2
/4.   

The energy which can be absorbed by the two bumpers without damage is: 2Eb = 5432 J. 

Therefore, 1100U
2
/4 = 5432 → U = 4.444 m/s = 16 km/h.          

 

Q.6a. 

The reference xyz is fixed to the bent rod and at the instant of interest have the same 

orientation as the ground reference XYZ.  

Unit vectors along x, y, z are i, j, k and along the X, Y, Z are I, J, K, respectively.  

Angular velocity of the disc C, 

ωC = ω1j + ω2K = 10 j + 5 K rad/s = 10 J + 5 K rad/s at this instant.   

Angular acceleration of the disc C 

αC = (dωC/dt)XYZ = (dω1/dt)j + ω1dj/dt + (dω2/dt)K + ω2dK/dt = ω1dj/dt = ω1(ω2K ×j)  

   = ω1ω2i  = 50i rad/s
2 .

= 50I rad/s
2
 at this instant.      

 

Q.6b.  

As the string breaks, the F.B.D. of the rod 

is shown in Fig.6b.     

The rod AB would start rotating about 

the pinned end A. 

At this instant, its angular velocity ω = 0, 

and angular acceleration is α.  

The equation of motion for rotation is 

ΣMA = IAα → -mgL/2 = (mL
2
/3)α  

→ α = -3g/2L.                 

Acceleration of the centre of mass C is aCx = 0 and aCy = αL/2 = -3g/4.    

The equations of motion for the centre of mass give the reactions at the hinge A 

H = maCx = 0.  

 R – mg = m aCy = m(-3g/4) = -3mg/4 → R = mg/4.    

L/2  A B 
x 

y 

C 

mg 
R 

H 

T = 0 

L/2 

Fig.6b 
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Ans.7(a) 

The bar is imagined to be cut by a plane at 45
0
 to the cross-section and the F.B.D. of the 

portion to the left is shown in Fig.7a.    

The area of the inclined section A' = A/cos45
0
 = A√2.  

The axial force P can be resolved into components 

normal to the area A' and in the plane of the area A'. 

Normal Force Pn =Pcos45
0
 =P/√2 

→Normal stress =Pn/A' =(P/√2)/A√2 = P/2A.   

Shear force Pt = Psin45
0
 =P/√2  

→ Shear stress = Pt/A' = (P/√2)/A√2 = P/2A.     

 

Q.7b. 

Hoop stress σθθ = pd/2t = 0.8×10
6
×2000/2×10 = 80×10

6 
Pa.

 
          

Axial stress σzz  = pd/4t = .8×10
6
×2000/4×10 = 40×10

6 
Pa.     

Hoop strain εθθ = (σθθ – νσzz)/E = (80×10
6
 – 0.25×40×10

6
)/200×10

9
 = 35×10

-5
.    

Change in diameter ∆d = εθθd = 35×10
-5

×2000 = 0.7 mm.           

 

Q.8. 

The F.B.D. of the beam is shown in 

Fig.8. From equilibrium of the beam, 

ΣFx = 0 → H = 0. 

ΣMB=0→8RA = -40 +10×4 + 40×2 =80 

→ RA = 10 kN 

ΣFy = 0 → RB = 50 – RA = 40 kN.   

 

The S.F. at a section x is  

V = RA - 10<x-4> 

Vmax = 40 kN at the right support B. 

The B.M. at a section x is 

 M = RAx + 40<x - 2>
0 

- 10<x - 2> 

        -10<x - 2>
2
/2. 

Mmax = 80 kNm at the centre C.  

The S.F. and B.M. diagrams are also 

shown in Fig.8.         

 

Q.9a. 

Let D be the diameter of the solid shaft in mm.  

The polar moment of the cross-section Ip = πD
4
/32.       

If τshaft  is the maximum shear stress in the shaft, the torque transmitted  

T = τshaftIp/(D/2) = τshaft πD
3
/16.    (1)     

Number of bolts n = 8, diameter of bolts d = 12.5 mm, pitch circle radius R =115 mm. 

If τbolt is the average shear stress in a bolt, the torque transmitted 

T = n×τbolt(πd
2
/4)×R = 8×τbolt(π×12.5

2
/4)×115  (2)  

As the torque transmitted T is the same and τshaft = τbolt, from equations (1) and (2) 

πD
3
/16 = 8×(π×12.5

2
/4)×115 → D = 83.2 mm. 

P P  45
0 

Pcos45
0 

 Psin45
0 

 A' 

Fig.7a 
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Q.9b. 

The inlet and outlet velocity diagrams are shown in Fig.9b. The subscripts 1 and 2 refer 

to the inlet and outlet conditions. Bucket speed U2 = U1 = 15 m/s. Inlet jet velocity 

V1 = Cv√(2gH) = 0.985√(2×9.81×42) = 28.27 m/s.       

From inlet velocity triangle  

Vr1 = V1 – U1 = 28.57 – 15 = 13.27 m/s. 

Vw1 = V1 = 28.27 m/s.             

The blade outlet angle β2 = 180
0
 – 165

0
 = 15

0
. 

Neglecting frictional losses  

Vr1 = Vr2 = 13.27 m/s.     

From outlet velocity triangle 

Vw2 = U2 - Vr2 cos β2 = 15 – 13.27 cos15
0
 = 2.18 m/s. 

Power developed P = ρQ(Vw1 - Vw2)U1  

= 1000×1×(28.27 – 2.18)×15 = 3913500 W = 391.35 kW.  

Available Power = ρgH 

= 1000×9.81×42 = 41202 W = 412.02 kW.      

Turbine efficiency η = Power developed/available power  

= 391.35/412.02 = 0.95 = 95%. 

                 

 

Q.10a. 

At the section 6 m below the throat, i.e. section 1  

Pressure p1 = 5 atm = 5×10.33 = 51.65m of water, velocity V1 and datum z1 = 0. 

At the throat, i.e. section 2 

Pressure p2 = 10.33 + 0.20 = 10.53 m of water, velocity V2 and datum z1 = 6. 

Applying Bernoulli’s equation between sections 1 and 2 

51.65 + V1
2
/2g + 0 = 10.53 + V2

2
/2g + 6 → V2

2 
- V1

2
 = 35.12×2×9.81 = 689 (m/s)

2
.  

Area of section 1, A1 = π×0.15
2
/4 = 0.0177 m

2
,  

Area of section 2, A2 = π×0.07
2
/4 = 0.00385 m

2
. 

Using the continuity equation, discharge Q = A1V1 = A2V2.    

V1 = Q/A1 = Q/0.0177 = 56.6Q and V2 = Q/A2 = Q/0.00385 = 260.   

Hence V2
2 

- V1
2
 = (260

2 
-56.6

2
)Q

2
 = 689 → Q = 0.1034 m

3
/s.     

 

Q.10b. 

Let the subscripts m and p denote the model and prototype, respectively. 

The inertial and viscous forces are important. Hence, the Reynolds number must be 

identical in the model and prototype flow. 

Re = (ρVL/µ)m =  (ρVL/µ)p           

As the fluid is the same ρ and µ of the model and prototype are the same, Hence 

(VL)m =(VL)p → Vm  = VmLp/Lm = 60×6 = 360 km/h.      

The non-dimensional term for the drag force F and inertia force ρV
2
L

2
 is (F/ρV

2
L

2
) and 

would be the same for the model and prototype, i.e. (F/ρV
2
L

2
)p = (F/ρV

2
L

2
)m  

Hence, prototype drag Fp = Fm (Vm
2
/Vp

2
)(

 
Lm

2
/Lp

2
) = 510×(360/60)

2
(1/6)

2
 = 510 N.   
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Q.11a. 

Vr = (∂ψ/∂θ)/r = V(1 - R
2
/r

2
)cosθ , Vθ = -∂ψ/∂r = -V(1 + R

2
/r

2
)sinθ.    

For the stagnation points in the flow Vr = 0 → r = R and Vθ = 0 → θ = 0, π. 

Hence the two stagnation points are (R, 0) and (R, π).     

The velocity on the surface of the cylinder is Vr = 0 and Vθ = -2Vsinθ.   

As the flow is given to be irrotational, Bernoulli’s equation can be applied between a 

point on the surface of the cylinder r = R and a point far upstream in the uniform flow 

where the velocity is V and pressure p∞. If p is the pressure on a point on the cylinder,  

p/ρ + (-2Vsinθ)
2
/2 = p∞/ρ + V

2
/2 → p = p∞ + ρ(1 - 4sin

2
θ)V

2
/2.    

 

Q.11b. 

 

A fully developed 

laminar flow through a 

horizontal pipe of 

radius R is shown in 

Fig.11b. The axial 

equilibrium of a 

cylinder of fluid of 

radius r and length dx is 

considered.     

(p + dp) πr
2
 – pπr

2
 = τ 2πrdx → τ = (r/2) dp/dx       

According to Newton’s law of viscosity τ = µdu/dr. Hence, µdu/dr = (r/2)dp/dx 

→ du/dr = (1/2µ)rdp/dx         

On integrating u = (1/4µ)r
2
dp/dx + C 

At r = R, u = 0. Hence, C = - (1/4µ)R
2
dp/dx.       

Substituting for C, u = (1/4µ)(R
2
 - r

2
)dp/dx.       

This is a parabolic distribution. The maximum velocity is at the centre-line r = 0.  

umax = (1/4µ) R
2
dp/dx.          

 r 

R 

p p+dp 

 u

τ

 x 
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