
SOLUTIONS D-02 APPLIED MECHANICS (June 2003) 
 

Q1.  a. A The friction force is absent hence the total reaction is normal to the 

   surface at the point of contact. 

  

 b. C For equilibrium of a body subjected to two forces, the forces must  

   be equal in magnitude, opposite in direction and must have the  

   same line of action. 

 

 c. B For a plane area, with the x,y axes in the plane and z axis normal to 

   the plane, the polar moment of inertia Izz = Ixx + Iyy. 

 

 d. B Let d be the depth of the well and t the time splash is heard. Then  

   the relation t =√(2d/9.81) + d/350 = 4 is satisfied for d = 70.77 m. 

 

 e. A The normal acceleration = V
2
/R = (72×1000/3600)

2
/200 = 2 m/s

2
. 

 

 f. B The shear stress = Force/Area resisting shear = F/(πDt). 

 

 g. B The modulus of elasticity is defined as the ratio of direct stress and 

   direct strain within elastic limit. 

 

 h. B The B.M. at any section at a distance x from the load P at the free  

   end is Px. The maximum B.M. would be at the fixed end xmax = L. 

 

Q.2. 

Consider the I-section to be divided in three parts 

1, 2 and 3 as shown in Fig.2. Let xi, yi be the 

coordinates of the centroids of the i
th

 area Ai. The 

centroid of the whole section is at C(xC, yC). 

 

As the section is symmetrical about the y axis its 

centroid would lie on the y axis, i.e. xC = 0. 

 

yC = ∑Aiyi/∑Ai  

= (150×2.5 + 75×12.5 + 100×22.5)/(150+75+100) 

= 10.96 cm. 

 

Q.3.  

Consider the F.B.Ds. of the joints E, D and C shown in Fig.3. The F.B.Ds are shown 

assuming tensile forces in the various members.   
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Considering the equilibrium of the joint E:  

∑Fx = - FCEcos45 = 0 → FCE = 0, ∑Fy = 0 → - FDE - FCEsin45 = 0 → FDE = 0. 

Considering the equilibrium of the joint D:  

∑Fy = FDE - FBDsin45 – 1 = 0 → FBD = -√2 kN, i.e. √2 kN(C). 

∑Fx = - FCD – FBDcos45 = 0 → FCD = 1 kN, i.e. 1 kN(T). 

Considering the equilibrium of the joint C:  

∑Fx = FCD + FCEcos45 – FACcos45 = 0 → FAC = √2 kN, i.e. √2 kN(T). 

∑Fy = - FBC + FCEsin45 - FACsin45 = 0 → FBC = - 1 kN, i.e. 1 kN(C). 

 

Q.4.  

A developed screw thread of pitch p, mean diameter d is shown in Fig. 4. The helix angle 

with the horizontal θ = tan
-1

 p/πd = tan
-1

 1.25/10π = 2.28
0
.  

The F.B.D. of the weight W while being lifted is also shown. 

The friction angle φ = tan
-1
µ = tan

-1
0.2 = 11.31

0
. 

The force F at the end of the lever of length R is equivalent to 

a horizontal force P at the screw thread,  

P = F×R/(d/2) = 50F/(10/2) =10F. 

Case(i)  

Consider the equilibrium of the load at impending slip 

upward as shown. The friction force f = µN.  

∑FV = Ncosθ – f sinθ – W → N = W/(cosθ + µsinθ). 

∑FH = P – Nsinθ – f cosθ, → P = N(sinθ +µcosθ) = W(sinθ +µcosθ)/(cosθ + µsinθ). 

→ P = Wtan(θ + φ) → F = Wtan(θ + φ)/10 = 50tan(2.28 + 11.31)/10 = 1.209 kN. 

Case(ii) 

For impending motion down, the direction of friction force is reversed and hence, 

→ P = Wtan(θ - φ) → F = Wtan(θ - φ)/10 = 50tan(2.28 - 11.31)/10 = - 0.795 kN. 

Efficiency = effort without friction/effort with friction, i.e.  

η = tanθ/tan(θ + φ) = tan2.28/tan(2.28+11.31) = 0.165 = 16.5%. 

As a force in the reverse direction is required to lower the load, the jack would be self 

locking.  

 

Q.5.  

The F.B.Ds. of the blocks are shown in Fig.5. The block on the 

horizontal surface is subjected to its weight M1g, normal reaction 

N, friction force µN and the tension T. The other block is 

subjected to its weight M2g and the tension T. The magnitude of 

acceleration of both the blocks is the same, i.e. a. The equations 

of motion for the blocks of mass M1 and M2 are, 

N = M1g.  (1) 

T – µN  = M1a  (2) 

M2g – T = M2a  (3) 

From equations (1) to (3)  

a = (M2 - µ M1) g/( M1 + M2) = (5 – 0.25×10)×9.81/(10 + 5) = 1.635 m/s
2
. 

T = M2( g – a) = 5(9.81 – 1.635) = 40.875 N.  
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Q.6. 

 Let at be the uniform tangential acceleration of the car. If it starts from rest, the speed V 

after time t would be, V = att. 

Then, at = V60/t = (18×1000/3600)/60 = 1/12 = 0.083 m/s
2
. 

The speed after 30 s would be V30 = att = (1/12)×30 = 2.5 m/s. 

The normal acceleration an = V30
2
/R = 2.5

2
/250 = 0.025 m/s

2
. 

 

Q.7.   

As the cylinder rolls without slip on the horizontal plane AB, 

the instantaneous centre of rotation is at the point of contact O 

of the cylinder with the horizontal plane (see Fig.7). The 

velocity of any point on the cylinder is proportional to the 

distance from O and normal to the line joining the point to O.  

Let ω be angular velocity of the cylinder. Then,  

ω = VC/OC = 20/1 = 20 rad/s. 

The velocity of point E, VE = ωOE = 20√2 m/s and is normal to 

the line OE as shown, i.e. VE = 20i + 20j  m/s. 

The velocity of point F, VF = ωOF = 20×2 = 40 m/s and is 

normal to the line OF as shown. i.e. VF = 40i m/s. 

 

Q.8.  

The F.B.D. of the beam is shown in Fig.8. Considering the equilibrium of the beam,  

∑MA = RD×12.5 – (10×5)×2.5 - 80×7.5 – (16×2.5)×13.75 = 0 → RD = 102 kN. 

∑Fy = RA + RD - 10×5 – 80 – 16×2.5 = 0 → RA = 68 kN. 

The expressions for the S.F. V(in kN) and B.M. M(in kNm) between various sections are, 

0 ≤ x ≤ 5 m   V = - 68 + 10x,  M = 68x – 10x
2
/2,     

5 ≤ x ≤ 7.5 m   V = - 68 + 10×5, M = 68x - 10×5(x-2.5),    

7.5 ≤ x ≤ 12.5m  V = - 68 + 10×5 + 80, M = 68x - 10×5(x-2.5) - 80(x-7.5),   

12.5 ≤ x ≤ 15m  V = - 16(15 - x), M = - 16(15 - x)
2
/2,     

The S.F. and B.M. 

diagrams with values at 

important sections are 

also shown in Fig.8. 

The maximum S.F. is 

Vmax = - 68 kN, 

at A (x = 0). 

 

The maximum B.M. is 

Mmax = 260 kNm, 

at C (x = 7.5 m). 

 

7.5 ≤ x ≤ 12.5m, 

M = - 62x + 725 = 0,  

at x = 725/62 = 11.7 m 

which is a point of 

contraflexure. 
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Q.9.  

The steel bar is loaded as shown in Fig.9.  

 

 

 

 

 

 

 

 

The cross-sectional area of the bar A = πd
2
/4 = π×25

2
/4 = 490.87 mm

2
. 

The axial force F in various portions of the bar OD would be, 

Portion OB (0 ≤ x ≤ 50cm):  

POB = 40 kN,  

Hence, stress σOB = POB/A = 40×10
3
/(490.87×10

-6
) = 81.5×10

6  
Pa = 81.5 MPa. 

Portion BC (50 cm ≤ x ≤ 90cm): 

PBC = 40 – 20 = 20 kN,  

Hence, stress σBC = PBC/A = 20×10
3
/(490.87×10

-6
)  = 40.7×10

6  
Pa. = 40.7 MPa. 

Portion CD (90 ≤ x ≤ 110cm):  

PCD = 30 kN,  

Hence stress σCD = PCD/A = 30×10
3
/(490.87×10

-6
)  = 61.1×10

6  
Pa. = 61.1 MPa. 

The total elongation δ = δOB + δBC + δCD = (σOBOB + σOBBC + σOBCD)/E 

= (81.5×10
6
×0.5 + 40.7×10

6
×0.4 + 61.1×10

6
×0.2)/(210×10

9
) = 0.33×10

-3
 m. 

= 0.33 mm. 

 

Q.10.  

Let a circular shaft of radius r and length l be subjected to a torque T as shown in Fig.10. 

The following basic assumptions are made while deriving the torsion formula: 

The material is linearly elastic following Hooke’s law. 

A plane section normal to the axis of the shaft remains plane and normal during 

deformation. 

A radial line in the section remains radial during deformation. 

 

 

 

 

 

 

 

 

 

 

 

Consider a radial plane OAA1O1. After deformation the plane occupies the position 

OA'A1O1, where θ is the angle of twist over the length l.  

Hence, the shear strain between circumferential and axial elements at radius ρ is γ = ρθ/l. 
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As the material follows Hooke’s law, the shear stress τ = Gγ = Gρθ/l.   

Both the shear strain γ and shear stress τ are proportional to the radial distance ρ.  

The maximum shear stress τmax = Grθ/l is at the outer fibers.   (1) 

The shear stress distribution over the cross-section is equivalent to the applied torque T  

JlGdAlGdAlGdAT
AAA

)/()/()/( 2 θρθρθρτρ ===×= ∫∫∫     (2) 

where, J  = ∫AρdA = πr
4
/2 is the polar moment of inertia of the cross-sectional area A. 

Combining the equations (1) and (2), 

rl

G

J

T maxτθ
== . 

 

Q.11(i). 

Complementary shear stresses:  

Consider an infinitesimal element of material at O, subjected to 

shear stresses τxy on the planes OB, AC and τyx on the planes 

OA, BC. Considering the moment equilibrium of the element, 

∑MO = 0 → τxy = τyx. 

The pair of shear stresses like τxy, τyx are called complementary 

shear stresses. They act at mutually perpendicular planes at a 

point, both directed towards or away from the common edge 

and are equal in magnitude.  

 

Q.11(ii).  

Tensile stress strain curve for a ductile material:  

The tensile engineering stress σ and the engineering strain ε curve for a ductile material 

like mild steel is shown in Fig.11(ii).  

The engineering stress = axial load/original area of cross-section, i.e. σ = P/A0. 

The engineering strain = change in length/original length, i.e. ε = (L – L0)/L0.  

The important points on the curve are:  

The proportional Limit P is the point upto 

which the stress is directly proportional to 

strain, i.e. follows Hooke’s law.  

The elastic limit E is the point upto which 

only elastic deformation takes place and the 

material returns to its original undeformed 

state on unloading. Generally, P and E are 

so close that they are indistinguishable. 

Loading beyond the elastic limit also 

causes permanent deformation and the 

deformation continues with very little 

increment in the load. The upper yield 

point YU and the lower yield point YL correspond to upper and lower points on the kink 

(if present) in the stress strain curve beyond the elastic limit. Generally the lower yield 

point is more reliable and is taken as the yield strength σY of the material. In the absence 

of a well defined yield point, the yield strength is taken as the stress which causes 0.2% 

permanent strain.  
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The ultimate point U corresponds to the maximum load the material can withstand. The 

stress σU is called the ultimate strength of the material. The necking in the specimen 

initiates at the ultimate point. 

The fracture point F corresponds to the fracture of the material. The stress σF is called the 

fracture stress. As the original area of cross-section is used in stress calculation, the 

fracture stress is less than the ultimate stress. 

 

Q.11(iii). 

Law of polygon of forces:  

The resultant of a number of coplaner forces can be found graphically using the law of 

polygon of forces. The law can be stated as follows: 

If several coplaner forces are acting at a point 

such that they are represented in magnitude and 

direction by the sides of a polygon taken in the 

same order, their resultant is represented in 

magnitude and  direction by the closing side of 

the polygon in the reverse direction. 

If the polygon is closed, i.e. no closing side is 

required, the forces would be in equilibrium.  

For example, consider coplaner forces F1, F2, F3 and F4 acting at a point O as shown in 

Fig.11(iii). The forces are represented in magnitude and direction by the sides ab, bc, cd 

and de, respectively. The closing side ae of the polygon abcde represents the resultant R 

of the forces. If the points a, e are coincident, the resultant R = 0, and the forces would be 

equilibrium. 

 

Q.11(iv). 

General plane motion of a rigid body can be considered as the sum of a plane translation 

and a rotation about an axis perpendicular to the plane 

motion:  

Consider a body undergoing plane motion in the xy 

plane from position 1 at time t to position 2 at time t + 

∆t as shown in Fig.11(iv). This general plane motion 

can be thought of as translation and rotation as follows: 

(a) Select a point A1 in the body and translate the whole 

body in the xy plane with displacement ∆RA such that 

the point A1 occupies its final destination A2. The body 

is in position 1*. 

(b) Rotate the body about the z axis through the point A2 by an amount ∆θ to obtain the 

final position 2. 

If instead of A1, some other point B1 is chosen for translation, the translation ∆RB ≠ ∆RA, 

but the rotation ∆θ would remain the same with the z axis passing through the final 

position B2 of the point B1. 
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SOLUTIONS D-02 APPLIED MECHANICS (December 2003) 
 

Q1.  a. A If the forces are concurrent, the moment about any point would  

   also be zero which may not be so in other cases. 

 

 b. D At impending slip the frictional force is equal to limiting friction. 

 

 c. A The efficiency η = M.A./V.R. = (1000/90)/15 = 0.74 > 0.5. 

 

 d. C The altitude of the equilateral triangle which is also a median is  

   (√3/2)a. One third of it is a/(2√3). 

 

 e. C In a compound lever, the simple leverages are all multiplied. 

 

 f. C The horizontal range of a projectile with projection angle θ is  

   (u
2
/g)sin2θ which is maximum for θ = 45

0
. 

 

 g. D The work done = torque×angle of rotation = 50×4π = 628 Nm. 

 

 h. C The point of contraflexure occurs in beams with two or more  

   spans. 

 

Q.2.  

Let M1 be the mass of the shot and V its absolute velocity at an angle θ to the horizontal. 

The relative velocity of the shot Vr with respect to the gun would be along the gun barrel 

at an angle α to the horizontal. Let Vg be the recoil velocity of the gun in the opposite 

direction. 

The equations relating the absolute and relative velocities of the shot and the recoil 

velocity of the gun are  

Vrsinα = Vsinθ.   (1) 

Vrcosα = Vcosθ + Vg.   (2) 

The conservation of momentum in the horizontal direction yields, 

M1Vcosθ - mM1Vg = 0.  (3) 

From equations (1) to (3) 

tanα = mtanθ/(m+1). 

 

Q.3.  

Assume that the block of weight W is given a virtual displacement δW down along the 

plane. The corresponding upward virtual displacement δP of the effort P would be,  

δP = δW/2.   (1) 

As the system is in equilibrium, according to the principle of virtual work, the virtual 

work done by all the forces must be zero. The forces which contribute to the virtual work 

are the effort P and the component of the weight of the block along the plane Wsin20. 

P× δP – Wsin20×δW = 0. (2) 

From equations (1) and (2), 

P = 2Wsin20. 

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com


Q.4.  

Let V be the velocity of the stone required to hit the bird and t the time at which it would 

be hit. Then, 

25 = Vcos30×t → t = 25/Vcos30  (1) 

10 = Vsin30×t – (½)gt
2
    (2) 

Substituting for time t from equation (1) in equation (2), 

10 = 25tan30 – 4.905(25/Vcos30)
2
 

→ V = (25/cos30)/√((25tan30 -10)/4.905) = 30.4 m/s. 

 

Q.5.  

The F.B.D. of the safe for possible slide down the plank of its own is shown in Fig.5. The 

safe is subjected to its 4000 N weight, the normal reaction N of the inclined plane and the 

limiting friction force µN. The inclination of the plank to 

the horizontal is α = tan
-1

1.2/2.4 = 26.565
0
.  

The forces normal to the plank must be in equilibrium, 

N = 4000cos26.565 = 3577.7 N. 

The limiting friction µN = 0.3×3577.7 =1073.3 N. 

The component of the weight of the safe parallel to the 

plank is 4000sin3577.7 = 1788.9 N 

As the weight component parallel to the plank is more 

than the limiting friction force, the safe can slide down the plank of its own. 

 

Q.6.  

The F.B.Ds. of the joints F, D and E are shown in Fig.6. The forces are assumed tensile in 

the members and are assigned positive sign. All the inclined members are at 45
0
 to the 

horizontal. 

 

 

 

 

 

 

 

 

 

 

 

Considering the equilibrium of joint F: 

∑Fx= - FDFcos45 – FEFcos45 = 0, ∑Fy= FDFsin45 – FEFsin45 -15 = 0 

→ FDF = 15/√2 kN, i.e  10.6 kN(T) and  FEF = - 15/√2 kN, i.e. 10.6 kN(C). 

Considering the equilibrium of joint D: 

∑Fx= FDFcos45- FADcos45 – FDEcos45 = 0, ∑Fy= FADsin45– FDEsin45 – FDFsin45 = 0. 

→ FAD = 15/√2 kN, i.e. 10.6 kN(T) and  FDB  = 0. 

Considering the equilibrium of joint E: 

∑Fx= FEFcos45 – FBEcos45 - FCEcos45 = 0, ∑Fy= FEFsin45 + FBEsin45 – FCE sin45 = 0. 

→ FCE = - 15/√2 kN, i.e. 10.6 kN(C) and  FBE  = 0. 
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Q.7.  

A vehicle of mass m is negotiating a level curve of radius R with uniform speed V as 

shown in Fig.7. The C.G. of the vehicle C is at a 

height h above the ground and the distance 

between the inner and outer wheels is b. 

The normal acceleration of  C, an = V
2
/R. 

At impending overturning, the normal reaction N* 

and friction force f* on the inner wheels are zero. 

Hence for vertical equilibrium,  

∑FV = N –mg = 0 → N = mg.   (1) 

The equations of motion in the radial direction is, 

∑Fn = man → f = m V
2
/R.   (2) 

The moment equilibrium about C yields, 

∑MC = 0 → N×b/2 - f ×h ≥ 0.   (3) 

Substituting for N and f from equations (1) and (2) into inequality (3), 

V ≤ √(bgR/2h). Hence, Vmax = √(bgR/2h). 

 

Q. 8.  

The F.B.D. of the structure is shown in Fig.8. The vertical reactions RA and RC act at the 

roller supports A and C, respectively. 

Considering the equilibrium of the beam, 

∑MA = 120×20 - RC×60 + (4×30)×75 = 0. 

→ RC = 190 kN. 

∑Fy = RA -120 + RC – 4×30 = 0.  

→ RA = 50 kN 

The expressions for S.F. V in kN and 

B.M. M in kNm at various sections are  

0 ≤ x ≤ 20m: 

V = -50, M = 50x. 

20 m ≤ x ≤ 60m: 

V = -50+120= 70, M = 50x – 120(x – 20). 

60 m ≤ x ≤ 90m: 

V = - 4(90 – x), M = - 4(90 – x)
2
/2. 

The S.F. and B.M. diagrams are also 

shown in Fig.8. 

The maximum S.F. Vmax = -120 kN 

occurs at the right support, x = 60m. 

The maximum B.M. Mmax = -1800 kNm 

also occurs at the right support x = 60 m. 

For 20 m ≤ x ≤ 60m, M = 50x – 120(x – 20) = 0 at x = 34.3 m which is a point of 

contraflexure. 

 

Q.9. 

As the material is the same, the allowable shear stress τo is the same for the shafts. 

From the torsion formula for shafts, the torque Tsolid = τ0J/rmax. 

For a solid shaft of diameter d: The polar moment of inertia Jsolid = πd
4
/32. 
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Tsolid = τ0J/rmax = τ0(πd
4
/32)/(d/2) = τ0πd

3
/16.      (1) 

For a hollow shaft of internal diameter di and external diameter do: 

The polar moment of inertia, Jhollow = π(do
4 

- di
4
)/32. 

Thollow = τ0J/rmax = τ0(π(do
4 

- di
4
)/32)/(do/2) = 16τ0(π(do

4 
- di

4
)/do)   (2) 

For the shafts of the same length and weight, the cross-sectional area must be equal, i.e. 

do
2 

- di
2
 = d

2
 → do/d  = √(1 + di

2
/d

2
)       (3) 

From equations (1) to (3),  

Thollow/Tsolid  

= (do
4 

- di
4
)/(dod

3
) = (do

2 
+ di

2
)/(dod) = do/d + di

2
/(dod) > 1. (proved). 

 

Q.10.  

Consider a uniform bar of original cross-sectional area A and length L0 subjected to equal 

and opposite axial forces P at each end. The final deformed length of the bar is Lf. Then, 

Stress σ is defined as the force per unit area, i.e. σ = P/A. This stress is known as the 

normal stress and may be tensile or compressive. 

Strain ε is defined as the change in length per unit length, i.e. ε = (Lf – L0)/L0. This strain 

is known as the normal strain and may be tensile or compressive. 

Young’s modulus of elasticity E is defined as the ratio of stress to strain within elastic 

limit, i.e. E = σ/ε, σ < σelastic.  

 

The F.B.D. of the rigid horizontal bar is shown in Fig.10. 

From the equilibrium equations of the bar, 

∑FV  = FA + FB - 50000 = 0. 

∑MB = FA×60 - 50000×40 = 0. 

→ FA = 100000/3 N, FB = 50000/3 N. 

Let AB be the cross-sectional area and σB the stresss in the 

rod B. Then, AB = FB/ σB = (50000/3)/50 = 333.3 mm
2
. 

As the rods are of the same length and their lengths remain equal after deformation, the 

strains in the rods must be equal, εA  = εB = σB/EB = 50/90000 = 1/1800. 

Hence, the stress in rod A, σA = EAεA = 200000/1800 = 1000/9 N/mm
2
. 

The cross-sectional are of the rod A, AA = FA/σA = (100000/3)/(1000/9) = 300 mm
2
. 

 

Q.11.  

Let RA and RB be the support reactions. As the loading is symmetrical about the centre,  

RA = RB = P/2.  

The expression for the B.M. M between A and D is, M = RAx = Px/2, where x is measured 

from A along the beam. 

Using the moment curvature relation, the deflection v is obtained as follows.  

EId
2
v/dx

2
 = - M = - Px/2 

Integrating, EIdv/dx = - Px
2
/2 + C1 

Due to symmetry, the slope dv/dx = 0 at x = l/2, C1 = Pl
2
/8. 

Integrating once more, 

EIv = - Px
3
/6 + C1x + C2 = - Px

3
/6 + Pl

2
x/8 + C2 

As the deflection v = 0 at the support x = 0, C2 = 0. 

Hence, the deflection at D (x = l/2), vD = Pl
3
/(24EI). 

 

A B

20 cm 40cm 

 50000N 

 FA  FB 

Fig.10 

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com


SOLUTIONS D-02 APPLIED MECHANICS (June 2004) 
 

 

Q.1.  a. D If a two force body is in equilibrium, the forces must be equal,  

   opposite and collinear.  

 

 b. C .3/22sin)()2/( 3

0

2

0 0

2
RdrrrdrrdyR

RR

=== ∫∫ ∫
π

θθπ  

 

 c. A The limiting force of friction F = µR. 

 

 d. C The force required to move the load W down is Wtan(α - φ).  

   For α < φ, the load would not move down for zero force. 

 

 e. B The moment of inertia of a semicircular section about its diameter  

   I = (1/2)(πR
4
/4) = 32π cm

4
. 

 

 f. B V = dS/dt = 14t +10. At t = 0, V = 10 m/s. 

 

 g. C The point of contra-flexure is a point where the beam curvature  

   changes sign and hence bending moment changes sign. 

 

 h. C Torsional rigidity of a shaft is given by GJ. 

 

 

Q.2.  

The F.B.D. of the wheel when it is just about to 

roll over the block is shown in Fig.2. Just when 

the wheel begins to roll over, there is no force 

from the ground on the wheel at B. The wheel is 

subjected to its own weight of 1000 N, the force P 

and the reaction R of the block.  

As the wheel is in equilibrium under three forces, 

W, P and R only, the forces are concurrent and 

pass through the point D.  

From the geometry of the figure,  

cosECA = CE/CA = 15/30 =1/2 → 2θ = 60
0
. 

angleCDA = (1/2)angleECA = θ = 30
0
. 

From Lame’s theorem,  

P/sinθ = W/sin(90-θ) → P = W tanθ = 1000tan30 = 1000/√3 = 577.4 N. 

 

Q.3.  

Consider the T section to consist of two rectangular parts 1 and 2 as shown in Fig.3. 

Let C(xC, yC) be the centroid of the T section. Let Ai be the area and xi, yi the cooordiantes 

of the centroid of the i
th

 part. 

C

P 

R

 15 cm 

B

r=30cm 

Fig.2

. 

D

W=1000N 

x 

y 

A

θ 

2θ 
E
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The y coordinate of the centroid is obtained as 

 yC = ∑Aiyi/∑Ai  

= [(6×4)×3 + (2×8)×7]/( 6×4 + 2×8)  

= 184/40 = 4.6 cm. 

The moment of inertia I
C

xx of the T section about 

an axis parallel to the x axis through C would be 

I
C

xx = ∑[(bihi
3
)/12 + (bihi)(yC – yi)

2
] 

= 4×6
3
/12 + 4×6(4.6 – 3)

2
  

+ 8×2
3
/12 + 8×2(4.6 – 7)

2 

= 231 cm
4
. 

 

Q.4. 

The F.B.Ds. of the joints E, D and C are shown in Fig.4. The forces are assumed tensile 

in the members and are assigned positive sign. 

 

 

 

 

 

 

 

 

 

 

 

Consider the equilibrium of joint E: 

∑Fx = - FCEcos45 = 0 → FCE = 0, ∑Fy = FDE - FCEsin45 = 0 → FDE = 0. 

Consider the equilibrium of joint D: 

∑Fy= - FBDsin45 + FDE = 0 → FBD = 0, ∑Fx = -FCD – FBDcos45 + 2 = 0 → FCD = 2 kN(T). 

Consider the equilibrium of joint C: 

∑Fx = FCD + FCEcos45 – FACcos45 = 0 → FAC = 2√2 kN(T). 

∑Fy= FCEsin45 - FACsin45 – FBC = 0 → FBC = -2 kN, i.e. 2 kN(C). 

 

Q.5. 

The F.B.D. of the ladder is shown in Fig.5. The man is at D 

(AD = d) for the ladder to start slipping. The ladder is 

subjected to its own weight W at C, the weight of the man 

W/2 at D, the normal reaction NA and the limiting friction 

force NA/2 from the floor at A and the normal reaction NB 

and limiting friction force NB/3 from the wall at B. 

From the force equlibrium equations, 

∑Fx = NB – NA/2 = 0 and ∑Fy = NA + NB/3 – W – W/2 = 0.      

NA = 9W/7 and NB = 9W/14. 

From moment equilibrium about A, 

∑MA = – NB×7/√2–(NB/3)×7/√2+W×3.5/√2+(W/2)d/√2 = 0.  

Substituting for NB in the moment equation, d = 5m. 

2cm 

6cm 

2cm 

2 

1 

C 

x 

y 

Fig.3 
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Q.6.  

Let the effort P be given a virtual displacement δP downward, then the virtual 

displacement of the load W would be δW  = δP/2 upward. 

If the system is in equilibrium, the sum of the virtual work must be zero, i.e. 

PδP – WδW = 0. → P = W/2 = 500 N. 

 

Q.7.  

Let at be the uniform tangential acceleration of the car. If it starts from rest, the speed V 

after time t would be, 

V = att. 

→ at = V60/60= (18×1000/3600)/60 = 1/12 = 0.083 m/s
2
. 

The speed after 30 s would be V30 = at×30 = (1/12)×30 = 2.5 m/s. 

The normal acceleration an = V30
2
/R = 2.5

2
/250 = 0.025 m/s

2
. 

 

Q.8.  

The stress σ = P/A = P/(πd
2
/4) = 100×10

3
/(πd

2
/4) = 100×10

6
. 

Hence, d = √(4/1000π) = 0.03568 m = 3.568 cm. 

The total elongation δ = (P/E)[L1/A1 + L2/A2 + L3/A3]  

= 100×10
3
/(290×10

9
)[0.1/(π×0.03568

2
/4) + 0.15/(π×0.1

2
/4) + 0.15/(π×0.08

2
/4)]  

= 0.0514×10
-3

 m = 0.0514 mm. 

 

Q.9.  

The F.B.D. of the girder is reproduced in Fig.9. The support reactions are determined by 

considering its equilibrium,  

∑MA=9RB–180×4.5-30×6-40×7.5= 0. 

→ RB = 143.33 kN. 

∑Fx = RA + RB - 20×9 – 30 -40 = 0. 

→ RA = 106.67 kN. 

The S.F. V and the B.M. M are, 

0 ≤ x ≤ 6m: 

V = - 106.67 + 20x. 

M = 106.67x – 20x
2
/2. 

6 m ≤ x ≤ 7.5m: 

V = - 106.67 + 20x + 30. 

M = 106.67x – 20x
2
/2 + 30(x - 6). 

7.5 m ≤ x ≤ 9m: 

V = 143.33 – 20(9 - x). 

M = 143.33(9 – x) – 20(9 - x)
2
/2. 

The S.F. and B.M. diagrams are also 

shown in Fig.9. 

The maximum S.F. Vmax = 143.33 kN 

at the right support, i.e. x = 9 m. 

The S.F. changes sign at x = 5.33 m. 

The maximum B.M. is at x = 5.33 m 

Mmax=284.4 kNm. 

 

A BC D

20kN/m 
40kN 30kN 

6m 
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9m 
 RA RB 

x 

y 
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13.33 

43.33 
73.33 

113.33 

143.33 

x 

x 

S.F.D. 

5.33m 

284.4 280
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Q.10.  

The F.B.D. of the girder is shown in Fig.10. RA and RB 

are the support reactions. From the equilibrium 

equations,  

∑MA = RB×L –P×a = 0. → RB = Pa/L.  

∑Fy = RA + RB - P = 0. → RA = P(L – a)/L.  

The expression for the B.M. at any section x using 

singularity functions is: 

M = - RAx + P < x - a> = - P(L – a)x/L + P < x - a>. 

If v is the deflection of the elastic line of the beam, 

EI d
2
v/dx

2
 = M = - P(L – a)x/L + P < x - a>. 

Integrating twice, 

EI dv/dx = - P(L – a)x
2
/2L + P < x - a>

2
/2 + C1  

EI v = - P(L – a)x
3
/6L + P < x - a>

3
/6 + C1x + C2  

At x = 0, v = 0 → C2 = 0.  

At x = L, v = 0 → C1 = Pa(L - a)(2L - a)/6L. 

Hence, v = - P(L – a)x
3
/6L + P < x - a>

3
/6 + Pa(L - a)(2L - a)x/6L. 

The deflection vP under the load P at x = a,  

vP = Pa
2
(L – a)

2
/(3EIL) 

= 120×10
3
×4.5

2 
(14 – 4.5)

2
/(3×210×10

9
×16×10

-4
×14) = 1.55×10

-2 
m = 1.55 cm. 

 

Q.11.  

A shaft of diameter d is subjected to a torque T. The shear modulus of the material is G. 

The shear stress τ at any radius r and the angle of twist θ over a length L is given by the 

torsion formula for circular shafts as 

τ/r = T/J = Gθ/L, 

where the polar moment of  inertia of the cross-section J = πd
4
/32.   

(i) The maximum shear stress τmax would be in the outer fibers at rmax = d/2.  

τmax= T(d/2)/J = 16T/(πd3
) = 16×560/(π×0.03

3
) = 105.63×10

6
 N/m

2
 =105.63 MPa. 

(ii) The angle of twist θ over a length L = 1m would be  

θ = TL/GJ = 32TL/(Gπd
4
) = 32×560×1/(82×10

9
×π×0.03

4
) = 0.0859 rad. = 4.92

0
. 

(iii) The shear stress τ at r = 0.01m would be 

τ = Tr/J = 32Tr/( πd
4
)= 32×560×0.01/(π×0.03

4
) = 70.42×10

6
 N/m

2
 = 70.42 MPa. 
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SOLUTIONS D-02 APPLIED MECHANICS (December 2004) 
 

 

Q1.  a. C Displacement magnitude = [(12×1/2)
2
+(8×1)

2
]

1/2
 = 10 km.  

 

 b.  A As the body moves in the horizontal plane, the work done by  

   weight is zero.     

 

 c. D The distance of the centroid from each leg is b/4 and hence from  

   the corner is b/√8. 

      

 d. B The mechanical efficiency = output/input = 120×10/(20× 80)  =  

 `  0.75. or 75%. 

 

 e. D Simple harmonic motion is always in a straight line.   

 

 f. C The kinetic energy = Iω
2
/2 = (mL

2
/3)ω

2
/2 =  mL

2
ω

2
/6.  

 

 g. A The maximum shear strain at the outermost fibers γmax = θr/L. 

   

 h. B In pure bending, the bending moment is constant and so the  

   curvature is constant. 

 

Q.2a. 

Resultant force in the x direction, Fx = 8 – 16cos120 = 8 – 16/2 = 0.    

Resultant force in the y direction Fy = 16sin120 = 16√3/2 = 8√3 N    

Acceleration the x direction ax = Fx/m = 0.       

Acceleration the y direction ay = Fy/m = 8√3/2 = 4√3 = 6.93 m/s
2
.    

 

Q.2b. 

Let the resultant R act downward at a point (xR, yR).  

∑Fz = 0 → R = 3 + 6 + 4 + 7 = 20 N.       

 

∑MOy = 0 →  xRR = 1×3 + 1×6 + 4×4 + 2×7 = 39 

 → xR = 39/20 = 1.95 m.          

∑MOx = 0 →  yRR =  1×3 + 3×6 + 0.25×4 + 4×7 = 50 

 → yR = 50/20 = 2.5 m.        

  

 

Q.3a. 

The F.B.Ds. of ball A and ball B are 

shown in Fig.3a.    

   

 

 

 

x 

y 
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O
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Q.3b. 

The F.B.Ds. of the joints C, B, D and E assuming tensile forces in the members, are 

shown in Fig.3b. 

Considering the equilibrium of joint C:  

∑FV = - FBCsin45 – 2000 = 0  

→ FBC = 2000√2 N = 2828.4 N(T). 

∑FH = - FDC + FBCsin45 = 0  

→ FDC = -2000 N = 2000 N(C). 

Considering the equilibrium of joint B: 

∑FH = - FBA+ FBCsin45 = 0  

→ FBA = 2000 N = 2000 N(T). 

∑FV = - FBD - FBCcos45 = 0  

→ FBD = - 2000 N = 2000 N(C). 

Considering the equilibrium of joint D:  

∑FV = FDAsin45 + FBD -2000 = 0  

→ FDA = 4000√2 N = 5656.9 N(T). 

∑FH = -FDE + FDC – FDAcos45 = 0 

→ FDE = - 6000 N = 6000 N(C). 

At support E, only normal reaction RE is possible. 

Therefore FAE = 0.     

 

Q.4. 

The I section is divided in parts 1, 2, 3 as shown in Fig.4. Let xC, yC be the coordinates of 

its centroid. Let Ai be the area and xi, yi the 

coordinates of the centroid of the i
th

 part.  

By symmetry → xC = 0.    

yC = ∑Aixi/∑Ai   

= (20×13 + 20×7 + 40×1)/(20 + 20 + 40) =.5.5 cm. 

Let Ixx and Iyy be the second moments of area about 

the coordinate axes.Then, 

Ixx = ∑Ixxi = ∑Aiyi
2
 + ∑(bihi

3
/12) 

∑Aiyi
2
 = 20×13

2
 + 20×7

2
 + 40×1

2
= 4400 cm

4
  

∑bihi
3
/12=(10×2

3
+ 2×10

3
+ 20×2

3
)/12= 186.67 cm

4 

→ Ixx = 4400 + 740/3 = 4586.67 cm
4
   

Iyy = ∑Aixi
2
 + ∑(hibi

3
/12)  

= 0 + (2×10
3 

+ 10×2
3 

+ 2×20
3
)/12 = 1506.67 cm

4
. 

Let ICxx and ICyy be second moments of area about the centroidal axes parallel to Ox, Oy. 

ICxx = Ixx – (∑Ai) yC
2
 = 4586.67 - 80×5.5

2
 = 2166.67 cm

4
 

ICyy = Iyy – (∑Ai) xC
2
 = 1506.67 – 80×0

2
 = 1506.67 cm

4
        

The polar moment about the axis through centroid ICzz = ICxx + ICyy = 3673.3 cm
4
.  

              

Q.5. 

The F.B.D. of the wedge being driven in the wood is shown 

in Fig.5. Considering the equilibrium at impending motion,    

∑Fy = µN1sin(θ/2)–N1cos(θ/2)+N2cos(θ/2) -µN2 sin(θ/2)= 0. 

→ (N2 –N1)[cos(θ/2)-µ sin(θ/2)]= 0.→ N1=N2 =N.   

C
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Σ Fx = P - N1sin(θ/2) - µN1cos(θ/2) - N2sin(θ/2) - µN2 cos(θ/2) = 0. 

→P = 2N[sin(θ/2) + µcos(θ/2)].      

For the wedge, depending on the coefficient of friction µ, a force P1 may be required to 

keep the wedge in place without being squeezed out. The friction forces are reversed and 

the force P1 is obtained from the expression for P by changing the sign of µ.  

P1 = 2N[sin(θ/2) - µcos(θ/2)].       

The wedge is self locking if P1≤ 0, → µ ≥ tan(θ/2).            

 

Q.6a. 

Horizontal velocity of the plane = 200 km/h = 200×1000/3600 = 55.56 m/s 

At the time of firing, the plane is vertically above the gun. Therefore, for the shell to hit 

the plane, the horizontal velocity of the shell must be the same as that of the plane. 

Let θ be the inclination of the gun to the horizontal. Then, 

300cosθ = 55.56 → θ = cos
-1 

= 55.56/300 = 79.3
0
.          

The shell hits the plane at time t and travels a vertical distance of 1000 m as a projectile. 

300sin79.3 t – 9.81 t
2
/2 = 1000 → t

2
 – 60.1 t + 203.9 = 0 → t = 3.6s, 56.5s 

The shell hits the plane at t = 3.6s.             

The horizontal distance of the plane from the gun = 55.56×3.61 = 200.6 m.      

 

Q.6b. 

The centripetal acceleration ar = V
2
/R = ω

2
R = 2

2
×0.5 = 2 m/s

2
.        

The tangential acceleration at = (dV/dt) = αR = 3×0.5 = 1.5 m/s
2
.    

The total acceleration = a = √(ar
2
 + at

2
) = √(2

2
 + 1.5

2
) = 2.5 m/s

2
.       

 

Q.7a. 

The F.B.D. of the 10 kg mass and 50 kg drum are shown in Fig.7a.  

The equation of motion for downward acceleration am of the mass is   

10g - T = 10am    (1)                  

The equation of motion for the clockwise angular acceleration α of 

the drum is 

0.4T = Iα = 50×(0.3)
2
α   (2)              

The relation between angular acceleration of the drum and linear 

acceleration of the mass is  

am = 0.4α    (3)            

From equations (1) to (3) → α = 6.43 rad/s
2
 and T = 72.3 N.   

 

 

Q.7b. 

The hammer falls freely. Hence the velocity just before impact with the plate,  

V1 = √(2gh) = √(2×9.81×2.5) = 7 m/s        

As the impact is perfectly plastic, both the hammer and pile move together after impact. 

Their common velocity V just after impact is obtained from momentum conservation. 

(50 + 20)×v = 50×7 → V = 5 m/s.        

Let R be the average resistance of the ground. Then from the work-energy principle 

Work done against the resistance = Loss of Kinetic Energy + Loss of Potential Energy 

→ 0.1×R = (50 + 20)×5
2
/2 + 0.1× (50 + 20) ×9.81→ R = 9436.7 N.    

 T 

 10g 

 T 
 50g 

40cm

Fig.7a 
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Q.8a. 

The tensile load extension diagram is as shown 

in Fig.8a. The elongation is 0.8 mm at the 

elastic limit load of 30 kN. Young’s modulus  

E = (P/A)/(∆L/L) for P ≤ 30 kN.   

→ E = (30×10
3
/100×10

-6
)/( 0.8/200)  

= 75×10
9 

Pa = 75 GPa.    

For 0.2% proof stress σ0 the permanent strain 

must be .002, i.e.  ∆L = 200×0.2/100 = 0.4 mm. 

This 0.4 mm permanent elongation is obtained 

by unloading from the 45 kN load.  

Hence, σ0 = 45×10
3
/100×10

-6
 Pa = 450 MPa.        

Ultimate stress σu = Max. load /Area of section. 

→σu =60×10
3
/100×10

-6 
Pa = 600 MPa. 

The permanent elongation after fracture = 3.6 mm. The permanent strain =3.6/200.  

Hence, the % elongation = (3.6/200)×100 = 1.8%.             

 

Q.8b. 

The area A resisting the shear is A = πdt.        

The punch force P = τ × A = τ πdt.        

 

Q.9. 

The relation between power P, torque T and rpm N is P = T×2πN/60.  

→ T = 628×10
3
×60/(2×3.14×200) = 30000 Nm.      

Let do be the outer diameter and di the inner diameter of the shaft. 

The polar moment of area of the shaft section is J = π(do
4
 - di

4
)/32.    

The torsion formula for a hollow shaft is τmax/(d0/2) = T/J = Gθ/L.    

From τmax/(d0/2) = Gθ/L,         

→ d0 = 2τmaxL/Gθ = 2×80×10
6
×4/[80×10

9
×(3×3.14/180)] = 0.153 m = 153 mm.   

From T/J = Gθ/L and J = π(do
4
 - di

4
)/32, 

→ J = π(do
4
 - di

4
)/32 = TL/Gθ → di

4 
= do

4
 – (32/3.14)× TL/Gθ   

→ di = [do
4
 – (32/3.14)×30000×4/[80×10

9
×(3×3.14/180)]]

1/4  
= 0..126 m = 126 mm.  

           

Q.10. 

The F.B.D. of the beam is shown in 

Fig.10. From beam equilibrium, 

∑MB  = - 4RA + 6×1 + 1×(3×2) = 0. 

→ RA = 3 kN.    

∑Fy  = RA + RB – 1 - 3×2 = 0  

→ RB= 4 kN    

The S.F. V ( kN) and B.M. M (kNm) are: 

0 ≤ x ≤ 2 m 

V = 1,  M = -x. 

2 m ≤ x ≤ 4 m 

V = 1 – 3 = - 2, M = -x + 3(x – 2). 
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4 m ≤ x ≤ 6 m 

V = 1 - 3 + 3( x – 4), M = -x + 3(x- 2) – 3(x – 4)
2
/2. 

The S.F. and B.M. diagrams are also shown in Fig.10.  

The maximum shear Vmax =  4 kN at the right support, i.e. x = 6 m.  

V = 1 - 3 + 3( x – 4) = 0 at x = 4.67 m. Hence, Mmax = 2.67 kNm at x = 4.67 m.  

The B.M. M = 1 - 3 + 3(x – 4) = 0 at x = 3 m which is a point of contraflexure. 

 

Q.11a.  

Let A and B be points on the elastic curve of a beam of flexural rigidity EI. The slopes of 

the tangents to the elastic curve at A and B are θA and θB, respectively. The tangential 

deviation tB/A is the displacement of point A from the tangent at B in a direction normal to 

the undeformed elastic curve. Let M be the bending moment at any section. 

 

The first theorem: The rotation between the 

tangents at points A and B is equal to the 

area of the (M/EI) diagram between these 

points. 

dxEIM
B

A
AB )/(∫=−→ θθ     

The second theorem: The tangential 

deviation of point A from the tangent at B, 

tA/B is equal to the first moment of the area 

of (M/EI) diagram about an axis normal to the undeformed elastic curve through A. 

∫=
B

A
BA xdxEIMt )/(/             

 

Q.11b. 

The B.M. at any section x, M = - Px.   

The B.M. M and (M/EI) diagrams are as 

shown in Fig.11b.    

As the tangent to the elastic curve at D is 

horizontal θD = 0, the slope at B,  

θB= - area (M/EI) diagram B to D= -∑Ai. 

A1 = (PL/2EI)(L/2)/2 = - PL
2
/8EI,  

A2 = (PL/4EI)L/2 = - PL
2
/8EI,  

A3 = (PL/4EI)(L/2) /2 = - PL
2
/16EI 

→ θB = 5PL
2
/16EI.     

Distances xi of the centroids of Ai from 

the vertical axis through B are  

x1 = L/3, x2 = 3L/4, x3 = 5L/6 

The deflection δB = tB/D = ∑Aixi.  

→ δB = - (PL
2
/8EI)L/3 - (PL

2
/8EI)×3L/4 - (PL

2
/16EI)( 5L/6) = - 3PL

3
/16EI.  
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