Code: AE73

Subject: INFORMATION THEORY & Co

ROLL NO

AMIETE – ET

JUNE 2013

Time: 3 Hours

studentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

$$(2 \times 10)$$

Max. Marks: 10

a. A probability density function is given by $P(x) = ke^{-x^2/2}, -\infty < x < \infty$. The value of k is

(A)
$$\frac{1}{\sqrt{2\pi}}$$
 (B) $\sqrt{\frac{2}{\pi}}$
(C) $\frac{1}{2\sqrt{\pi}}$ (D) $\frac{1}{\pi\sqrt{2}}$

b. The spectral density of real valued random process has

(A) an even symmetry	(B) an odd symmetry
(C) a conjugate symmetry	(D) no symmetry

c. The imaginary channel rejection in a superheterodyne receiver comes from

(A) IF stages only	(B) RF stages only
(C) Detector and RF stages	(D) Detector, RF & IF stages

d. If Y and Z are random variables obtained by sampling X(t) at t = 2 and t = 4respectively and let W = Y - Z. The variance of W is

(A) 13.36	(B) 9.36
(C) 2.64	(D) 8.00

e. Auto correlation function of a random process is

(A)
$$R(t_1, t_2) = E(XY) = \iint xy p(x, y) dxdy$$

(B) $E(XY) = \iint x^2 y^2 dxdy$
(C) $P(t_1, t_2) = \iint x^2 y^2 dxdy$

(C)
$$R(t_1, t_2) = \iint x^2 y^2 dx dy$$

(D) None of these

AE73 / JUNE - 2013

1

number of check bits in the block would be

(A)	3	(B) 4
(C)	5	(D) 7

h. Maximum-Length codes are generated by polynomials of the form

$(\mathbf{A}) \ g(\mathbf{D}) = h(\mathbf{D}) \cdot (1 + \mathbf{D}^n)$	$(\mathbf{B}) g(\mathbf{D}) = \frac{h(\mathbf{D})}{(1+\mathbf{D}^n)}$
$(\mathbf{C}) g(\mathbf{D}) = \frac{1 + \mathbf{D}^n}{h(\mathbf{D})}$	(D) None of these

i. If the data unit is 111111 and divisor is 1010, then the dividend at the transmitter is

(A) 1111111000	(B) 1111110000
(C) 111111	(D) 111111000

j. A source generates 4 messages. The entropy of source will be maximum when

(A) All probabilities are equal (B) One of probabilities equal to 1 and others are zero (C) The probabilities are $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{2}$ (D) Two probabilities are $\frac{1}{2}$ and others are zero

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Define the following terms: (i) Joint probability (ii) Probability mass function (ii) Conditional probability (iv) Statistical independence (8)
 - b. The input of a binary communication systems denoted by random variable X, takes on one of the two values 0 or 1 with probabilities $\frac{3}{4}$ and $\frac{1}{4}$ respectively. Due to error caused by noise in the system, the output Y differs

AE73 / JUNE - 2013

Code: AE73

Subject: INFORMATION THEORY & C

ROLL N

(8)

(8)

(8)

(8)

(8)

StudentBounty.com from the input X occasionally. The behaviour of the communication system modelled by the conditional probabilities.

$$P(Y = 1 | X = 1) = \frac{3}{4} & P(Y = 0 | X = 0) = \frac{7}{8}$$

Find
(i) $P(Y = 1)$ and $P(Y=0)$
(ii) $P(X = 1 | Y = 1)$

Q.3 a. Explain the three models for continuous random variables. (8)

b. X and Y are two independent random variables, each having a Gaussian probability distribution function with a mean of zero and a variance of one. Find P(|X| > 3) using Q(4) and also obtain an upper bound. Given that $Q(0) = \frac{1}{2}, Q(3) = 0.0013.$ (ii) Find the joint PDF of $Z = \sqrt{x^2 + y^2}$ & $\omega = \tan^{-1} \left(\frac{y}{x} \right)$

(iii) Find
$$P(z > 3)$$

a. Explain Markoff statistical model for information sources. (8) 0.4

b. A discrete source emits one of five symbols once every millisecond. The symbol probabilities are $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ and $\frac{1}{16}$ respectively. Find the source (8) entropy and information rate.

0.5 a. Explain briefly Huffman coding and prefix coding.

b. A source produces one of four possible symbols during each interval having probabilities $P(x_1) = \frac{1}{2}$, $P(x_2) = \frac{1}{4}$, $P(x_3) = P(x_4) = \frac{1}{8}$. Obtain the information contents of each of these symbols. (8)

a. Explain Discrete Memoryless channel. **Q.6**

- b. A discrete memoryless source X has four symbols x_1, x_2, x_3, x_4 with probabilities $P(x_1) = 0.4$, $P(x_2) = 0.3$, $P(x_3) = 0.2$, $P(x_4) = 0.1$ (i) Calculate H(X)(ii) Find the amount of information contained in the message $x_1x_2x_1x_3$ and (8) x4x3x3x2.
- 0.7 a. Explain the following terms:
 - (i) Mutual information
 - (ii) Channel capacity

3

Code: AE73 Subject: INFORMATION THEORY & CO

ROLL NO

(8)

- b. Explain differential entropy and mutual information for continuous ensemb
- StudentBounty.com a. What is linear block code? Explain the steps for determination of all code **Q.8** words for a linear block code.
 - b. The generator matrix for a (6, 3) block code is given as

1 $0 \ 0 \ 0 \ 1 \ 1$ $\mathbf{G} = \begin{bmatrix} \mathbf{0} \end{bmatrix}$ 0 1 0 1 1 0 0 1 1 1 0

Find all code vectors of this code.

- 0.9 a. Explain cyclic codes. Give their advantages and disadvantages. (8)
 - b. Obtain the convolutional coded output for the message '1100101'. The convolutional encoder is shown in Fig.1 (8)

