Code: AE72

Subject: MICROWAVE THEORY AND TEC

AMIETE – ET

Time: 3 Hours

JUNE 2013

ROLL NO.

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:
$$(2 \times 10)$$

a. The phase velocity v_p and group velocity v_g are related to C, the free space velocity by _____ relation.

(A)
$$\frac{v_p}{v_g} = C$$
 (B) $v_p v_g = C^2$
(C) $v_p v_g = C^3$ (D) $\sqrt{\frac{v_p}{v_g}} = C$

- b. Microwave crossed field tubes device their names from the fact that
 - (A) DC electric field and DC magnetic field are perpendicular to each other.
 - (B) AC electric field and AC magnetic field are horizontal to each other.
 - (C) AC electric field and DC magnetic field are perpendicular to each other.
 - (D) There is no relation between any of these fields.
- c. If X band pulsed cylindrical magnetron has magnetic flux density $B_0 = 0.336 \text{ wb/mt}^2$ its cyclotron angular frequency is _____

(A)
$$\omega_{c} = e/m B_{o} = 5.91 \times 10^{10} \text{ rad}$$
 (B) $\omega_{c} = \frac{em}{B_{o}} = 11 \times 10^{10} \text{ rad}$
(C) $\omega_{c} = em B_{o} = 5 \times 10^{5} \text{ rad}$ (D) $\omega_{c} = \frac{m B_{o}}{e} = 6 \times 10^{5} \text{ rad}$

d. A microwave circulator is a multiport junction where the power can flow from

(D) microwave circulator cannot be used for power carrying purpose

⁽A) port 1 to port 2 and port 2 to port 3 etc

⁽B) 3 to 2 and 2 to 1 etc

⁽C) no power flows from any port

Code: AE72	Subject: MICRO	WAVE THEORY AND TEC aracteristic impedance of $75 + j0.01\Omega$ and $70 + j50\Omega$. The reflection coefficient is (B) $0.6 + j50\Omega$	
		aracteristic impedance of $75 + j0.01\Omega$ and	
terminated i	n a load impedance of 7	$70 + j50\Omega$. The reflection coefficient is	
	_•	· On	
(A) $0.8 + j4$		(B) $0.6 + j50\Omega$	
(C) 0.9 + j6	0Ω	(D) $0.08 + j0.32\Omega$	
f. The modes	of oscillations in an n-typ	rpe GaAs is/are	J
and Bias-cir	cuit oscillation mode scillation mode	oscillation mode, Stable amplification mode	
	rcuit oscillation mode on	nly	
g. A two cavit	y klystron is a widely use	ed microwave amplifier operated by	
(B) electron (C) on same	and current modulation motion principles as low freque we structure		
h. TWT the tra	velling wave tube uses _	as a slow wave structure.	
(A) wave g	uide	(B) wire	
(C) a long l	nelix	(D) none of these	
i. A certain Si	i. A certain Si JFET has the following parameters channel height $a = 0.1 \mu m$, electron concentration $N_d = 8 \times 10^{17} \text{ cm}^{-3}$, Relative dielectric const. $\epsilon_r = 11.8$.		
electron cor			
	ne pinchoff voltage, is gi		
(A) 60 Volts (C) 88 Volts		(B) 106.6 Volts(D) 6.66 Volts	
j. A rectangula	ar wave guide cannot sup	pport a wave.	
(A) TM mo	de	(B) TEM mode	
(C) TE mod	e	(D) None of these	
Answ	er any FIVE Questions Each question ca	s out of EIGHT Questions. arries 16 marks.	

ROLL NO.

Q.2 a. List out the different types of transmission lines used at low frequency and at RF frequency with neat figures. Why wave guides are used at microwave frequencies.
(8)

AE72 / JUNE - 2013

Subject: MICROWAVE THEORY AND TEC Code: AE72

b. Explain Smith Chart, explain how VSWR can be obtained from it. example.

ROLL NO.

- StudentBounty.com Q.3 a. Starting from Maxwell's equations device wave equation for rectangular wave guide.
 - b. Calculate the voltage attenuation provided by a 25cm length of wave guide having a = 1 cm and b = 0.5 cm in which 1 GHz signal is propagated in dominant mode, {symbols have usual meaning}
- **O.4** a. Explain the performance of a directional coupler with a neat diagram. Derive an expression for [S] matrix of directional coupler. (10)
 - b. Write short notes on: (ii) Microwave circulator (i) Magic T (6)
- Q.5 a. Explain the concept of negative differential conductivity. Explain the different modes of oscillation of Gunn diode. (10)
 - b. Write a note on principle of operation of microwave Tunnel diode. (6)

a. A Reflex klystron operates under the following conditions: **Q.6**

 $V_o = 600$ volts, $\alpha = 1$ mm, $R_{sh} = 15$ K Ω , $e/m = 1.759 \times 10^{11}$, $f_r = 9$ GHz

The tube is operating at $f_v f_r$ at the peak of the n = 2 mode or 1 $\frac{3}{4}$ mode. The transit time through the gap and beam loading can be neglected. Find the value of repeller voltage V_r . (8)

- b. Write a Schematic diagram of reflex klystron. Explain the action of the tube giving importance to applegate diagram. (8)
- **Q.7** a. Describe the principle of operation for a normal cylindrical magnetron and derive equation for cyclotron angular frequency. (4+4)

b.	A circular carcinotron has the operating parameters			
	Anode voltage	Vo = 20kV		
	Anode Current	$I_0 = 3.5A$		
	Magnetic flux density	$B_o = 0.3 \text{Wb}/\text{m}^3$		
	Operating frequency	f = 4 GHz		
	Characteristic impedance	$Z_0 = 50\Omega$		
	D factor	D = 0.8		
	b factor	b = 0.5		
	Compute:			
	(i) The dc electron velocity			
	(ii) The electron-beam phase constant(iii) The delta differentials			
	(iv) The propagation constants			

(8)

Code: AE72 Subject: MICROWAVE THEORY AND TEC

Q.8	a.	Derive an expression for quality factor Q of Micro-strip lines.	(6) (1)	
	b.	Certain microstrip line has the following parameters $\epsilon_r = 5.23$, h = 7mils, t = 2.8mils, $\omega = 10$ mils Calculate the characteristic impedance Z ₁₀ of the line.	(6)	3
	c.	Write a note on parallel strip line.	(4)	
Q.9	a.	What are the advantages offered by MMIC over the discrete circuits? detail the MMIC technique.	Discuss in (8)	
	b.	Explain the types of planar capacitors commonly used in MMICs.	(8)	