Code: DE57 Subject: NETWORKS AND TRANSMISSIO

Diplete - ET

Time: 3 Hours

DECEMBER 2013

SHIIDENR BOUNTY. COM PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. The characteristic impedance Z_0 of transmission line is
 - (A) Arithmetic mean of Z_{oc} and Z_{sc}
 - **(B)** Geometric mean of Z_{oc} and Z_{sc}
 - (C) Harmonic mean of Z_{sc} and Z_{oc}
 - (**D**) Always equal to Z_{sc} and Z_{oc}
- b. A transmission line becomes distortion less if
 - (A) G = 1/R

- **(B)** LG = CR
- (C) It operate in AF range
- (**D**) It is properly matched
- c. Norton's equivalent circuit consists of
 - (A) voltage source in parallel with impedance
 - **(B)** voltage source in series with impedance
 - (C) current source in series with impedance
 - (**D**) current source in parallel with impedance
- d. The convolution of f(t)*g(t) is

(A)
$$\int_{0}^{\infty} f(t)g(t-\tau)d\tau$$
(C)
$$\int_{0}^{t} f(t-\tau)g(t)dt$$

(B)
$$\int_{0}^{t} f(t)g(t-\tau)d\tau$$

(C)
$$\int_{0}^{t} f(t-\tau)g(t)dt$$

(B)
$$\int_{0}^{t} f(t)g(t-\tau)d\tau$$
(D)
$$\int_{0}^{t} f(t)g(t-\tau)dt$$

Code: DE57

Subject: NETWORKS AND TRANSMISSIO

- e. If Z parameter of a two port network are $Z_{11}=5\Omega$, $Z_{22}=7\Omega$; $Z_{12}=Z_{21}=3\Omega$ the A,B,C,D parameters are respectively given by
 - (A) $\frac{5}{3}$; $\frac{26}{3}$; $\frac{1}{3}$; $\frac{7}{3}$

(B) $\frac{10}{3}$; $\frac{52}{3}$; $\frac{2}{3}$; $\frac{14}{3}$ **(D)** $\frac{3}{5}$; $\frac{3}{26}$; $\frac{3}{1}$; $\frac{3}{7}$

(C) $\frac{15}{3}$; $\frac{78}{3}$; $\frac{3}{3}$; $\frac{21}{3}$

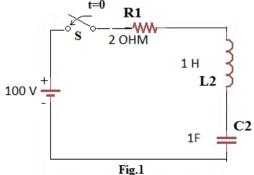
- f. An ideal filter should have
 - (A) Zero attenuation in the pass band
 - **(B)** Infinite attenuation in the pass band
 - (C) Zero attenuation in the attenuation band
 - (**D**) Infinite attenuation in the attenuation band
- g. A transmission line VSWR is a
 - (A) vector quantity

- (B) scalar quantity
- (C) dimension quantity
- (**D**) exponential term
- h. Time constant of series RL circuit is
 - (A) $\frac{R}{L}$

(B) $\frac{L}{R}$

(C) RL

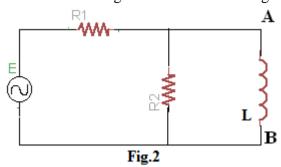
- (**D**) None of these
- i. In a circuit containing R, L and C, power loss can take place in
 - (A) L only

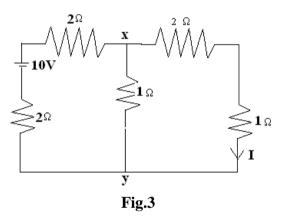

(B) R only

(C) C only

- (**D**) All of these
- j. Propagation constant parameter is used in
 - (A) Symmetrical networks
- **(B)** Asymmetrical networks
- (C) Both type of networks
- (**D**) Inverse networks

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Determine the current in a circuit as shown in Fig.1, when the switch 's' is **Q.2** closed at t=0. Assume there is no initial charge on the capacitor or current in the inductor **(8)**


Code: DE57

Student Bounty.com Subject: NETWORKS AND TRANSMISSIO

b. For the network shown in Fig.2 determine the voltage across inductor.

- 0.3 a. Find the Laplace transform of any function that repeats itself. **(8)**
 - b. Write short note on-**(8)**
 - (i) Initial and final value theorem
 - (ii) Convolutional Integrals
- **Q.4** a. State Reciprocity theorem and check whether the circuit shown in fig.3 obeys reciprocity theorem

- b. State and prove the substitution theorem.
- a. The z-parameter for a 2-port network are Z_{11} =30 Ω , Z_{22} = 40 Ω , Z_{21} = 20 Ω . Q.5 Find the equivalent T network.
 - b. For the given 2 port network calculate ABCD. Parameters and image impedances. **(8)**

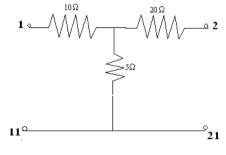


Fig.4

Q.6 a. Draw and explain a series resonant circuit with the help of phasor diagram. (8)

(8)

(9)

Code: DE57 Subject: NETWORKS AND TRANSMISSIO

b. What is quality factor? Explain its effect on bandwidth. Determine Q factor a coil for the series circuit having resonance frequency $f_r = 7.12$ Hz and BW = 3.178 Hz (8)

- **Q.7** a. Explain the following
 - (i) Reflection coefficient (ii) Secondary line constants
 - (iii) Distortion less Transmission Line
 - b. A transmission line connects a transmitter of 1.2 MHz to the aerial located 100m away from it. If Z_0 of the lines be equal to 500Ω . What is the input impedance of this line if antenna end is a) open circuited b) short circuited. (7)
- Q.8 a. What is stub? Explain the different type of stub matching used in transmission lines. (10)
 - b. Derive the relation between VSWR ('S') and Reflection coefficient ('K'). (6)
- Q.9 a. A Π section filter network consists of a series arm inductance of 10mH and two shunt arm capacitances of 0.16 μF each. Calculate the cut-off frequency and attenuation and phase shift at 12 KHz. What is the value of nominal impedance in the pass band?
 - b. Design k- type band pass filter having a design impedance of 500Ω and cutoff frequencies 1 KHz and 10 KHz. (8)