DC 65 SOFTWARE ENGINEERING

a. Explain the concept of socio-technical systems. What are the characteristics
of socio-technical systems?

Q.2

Answer:

2.a. A system is a purposeful collection of interrelated components that work together to achieve
some objective.

Systems that include software fall into two categories.

* Technical computer-based system are systems that include hardware and software
components but not procedures and processes. e.g. televisions, mobile phones and most
personal computer softwares. Individuals and organizations use technical systems for
some purpose but knowledge of this purpose is not part of the system.

* Socio-technical systems not only include one or more technical systems but, also include
knowledge of how the system should be used to achieve some broader objective. This
means that these systems have defined operational processes, include people as inherent
parts of the system, are governed by organizational policies and rules and may be affected
by external constraints such as national laws and regulatory policies.

Essential characteristics of socio - technical system:

1. They have emergent properties that are properties of the system as a whole rather
than associated with individual parts of the system. Emergent properties depend on
both the system components and the relationship between them. As this is so
complex, the emergent properties can only be evaluated once the system has been
assembled.

2. They are often nondeterministic. This means that, when presented with a specific
input, they may not always preduce the same output. The system's behaviour
depends on the human operators. and people do not always react in the same way.
Furthermore, use of the system may create new relationships between the system
components and hence change its emergent behaviour.

3. The extent to which the system supports organizational objectives does not just
depend on the system itself. It also depends on the stability of these objectives, the s
relationships and conflicts between organizational objectives and how people in the
organization interpret these objectives. New management may reinterpret the
organisational objective that a system is designed to suppor, and a 'successful’
system may then become a ‘failure’.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

b. Explain the Waterfall model. Illustrate your answer with the help of Block
diagram.
Answer:
- ay
2.b.The Waterfall Model
Waterfall model is the first model of the software development process which was derived from
more general system engineering process. This model has five phases: Requiraments analysis
and specification, design, implementation and unit testing, integration and system testing, and
operation and maintenance. The phases always occur in this order and do not overlap. The
developer must complete each phase before the next phase begins. This model is named
“Waterfall Model”, because ils diagrammatic representation resembles a cascade of waterfalls.

Ferepubrusmani Arslysis F—

Ve] MODERATION-L
[_ ; Cemign I— |

" =
LE Ty
'F!'l_a--g'ullun L Sywtem|
Tealing 1
[Operalion &

M alnsfERon

1. Requirements analysis and specification phase:

The goal of this phase is to understand the exact requirements of the customer and fo
documenis them properly. This activity is usually executed together with the customer. as the goal
I5 to document all functions, performance and interfacing reguirements for the software. The
requirements describe the “whal” of a system, not the “*how’. This phase produces a large
document, written in a natural language. contains a description of what the system will do without
describing how it will be done. The resultant document is known as software requirenmeant
specification(SRS) document.

The SRS document may act as contract between the developer and customar. If developer falls to
implement full set of requirements, it may amount to failure to implement the contracted systam

Z.Design phase:

The SRS document is produced in the previous phase, which contains the exact requirements of
the customer. The goal of this phase is to transform the requirements specification inte a structure
that is suitable for implementation in some programming language. Here, overall software
architecture is defined, and the high level and detailed design work is performed. This work is

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

ign description (SO0 document, The 'infarmation
containad in the SDD should ba sufficient to bagin the coding phass

F.implementation and unit tosting phaso -

During this phase, dasign is implemented. If the 500 iz complote, the implementation or coding
phase proceeds smoothly, because all the information nesded by the software davalopers is

contained in the SDO.

During testing, the major activities are centared around the examination and modification of tha
code. Initially, small modules are tested in isolation from the rest of the software product. There
are problems associated with testing a module in isclation. How do we run a module without
anything to call it. to be called by it or, passibly, to cutput intermediate values obtainad during
execution? Such problemsa are solved in this phase and modules are tested after writing some

overhead code,

4.integration and sSystem testing phase:;

Thiz is & very important phase. Effective testing will contribute to the delivery of higher quality
software predicts, more satisfied usars, lower maintenance costs, and more aceurate and reliable
rasulis, It is a very expensive activity and consumes one-third 1o ane half of tha cost of a typical

development project.

The purpose of unit lesling is to determine that sach indepandent madule |5 carmectly

Implemented, This gives litle chance lo delermine that the interface between modules s also
correct, and for this reaszon Integration tesling is performed. System tesling involves the tesling of
lha antire system, whereas software is a part of the system. This is essential 1o build confidence in
the developers before system s deliverad to tha customer or released in the market,

5.0paration and malntonance phase:

pment group has lo face, when the software is

Softwara mainlenance s a losk that every develo
Therefore, release of software

delivered 1o the customers site. installed and is operational.
Inavgurates the operatlon and maintenance phace of the e cycle. The time spent and effon
required to keep the software oparational after relwase is vory significanl. Despite the Tact that it s
a very imporant and challenging task: it is routinely the poorly managed headachs that nobody

wianis o face,

Software maintenance is a very broad activity thal includes errar corfrection, snhancemeni of
capabilities. deletion of obsolete capabilities, and oplimization. The purpgse of this phase is to
presorve tha value of the software over ime. This phase may span for 5 s 50 vears wheraas

development may be 1 1o 3 vears,
A

This model is easy 1o understand and reinforces the notion of “defing before design” and
“design befora eoda”. This model expects complete and Bccurale requirements early in the
process, thus dalaying the discovary of serious arrors. It also does not ncorparate any kind
of risk asssssment. m “ ﬂ F o ATl 0 11....‘_‘
Due to these weaknesses, the application of walerfall model should be imited to situations whera

the requirements and their implementation are wall understood. For axampls, if an organization
has axperience in devaloping accauniing syslems then building & new accounting svstem bBased

an axisting designs could be easily managed with the waterall modal

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

Q.3 a. Explain various stages of Requirement Engineering process. Illustrate your
answer with the help of Block Diagram.

Answer:

3.a. Requirement Engineering : Software specification or requirements engineering is the
process of understanding and defining what services are required from the system and identifying
the constraints on the system's operation and development. Requirements engineering is a critical
stage of the software process as errors at this stage inevitably leads to later problems in the
system design and implementation.

Requirement Engineering Process: This process leads to the production of a requirements
document that is the specification for the system. Requirements are presented al two levels of
detail in this document End-users and customers require a high level statement of the
requirements; system developers require a more detailed system specification

Phases in Requirement Engineering Process:

1. Feasibility Study: An estimate is made of whether the identified user needs can be
salisfied using current software and hardware technologies. Feasibility study considers
whether the proposed system is cost effective from a business point of view and whether it
can be developed within existing budgetary constraints. A feasibility study should be cheap
and quick. The result of feasibility study helps in making decision of whether to go ahead
with a more detailed analysis.

2. Requirements elicitation and analysis: This is the process of deriving the system
requirements through observation of existing systems, discussions with potential users,
task analysis and so on. This involves the development of one or more system models and
prototypes. These help the analyst in understanding the system to be specified.

3. Requirement specification: The activity of translating the information gathered during the
analysis activity into a document that defines a sef of requirements. Various types of
requirements that are included in this document are:

1. User Requirements: are absiract statements of the system requirements for
the customer and end-user of the system.

2. System Requirements: are more detailed description of the functionality to be
provided.

4. Requirements Validation: This activity checks the requirements for consistency and
completeness. During this process, errors in the requirements document are inevitably
discovered. It must then be modified to correct these prablems.

e g

¥] -*—lkﬂm':ﬂ*zjl-——

%ﬂ"\ ’I_) i :._‘_:r ?m~}_liu

{“ ..":q' H:.:v hﬂm r | e ""-:‘_‘ \mlnun :|
g LD =

S ey]

The activilies in the requirements process are not Supposed to be carmied out In stricl sequence.
Requirerment analysis conlinuas during definition and specification and new requiremenis keep on
coming throughout the process. Therefore, the activities. of analysis, definition and specification
are interleaved.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

b. What is Software Requirement Specification (SRS)? List five desirable
characteristics of a good SRS document.

Answer:

3.b. Risk Management:-

* Risk management is one of the main jobs of project managers. It involves
anticipating risks that might affect the project schedule or the quality of the software
being developed and taking action fo avoid these risks. The results of the rigk
analysis should be documented in the project plan along with an analysis of the
consequence of a risk occurring. Effective risk management makes it easier to cope

with problems and to ensure that these dg not lead to unacceptable budget or
schedule slippage.

Types of risks;

1. Project risks are risks that affect the project schedule or resources. An example might
be the loss of an experienced designer.

2. Product risks are that affect the quality or performance of the software being
developed. An example might be the failure of a purchased component to perform as
expected,

3. Business risks are risks that affect the organization developing or procuring the
software. For example, a competitor introducing a new product is a business risk.

* Risk management is particularly important for software project because of the
inherent uncertainties that most Projects face. These stem from loosely defined
requirements, difficulties in estimating the time and resources required for
software development, dependence on individual skills and requirements
changes due to changes in customer needs. Project managers have o
anticipate risks, understand the impact of these risks on the project, the product
and the business, and take steps to avoid theses risks. Project managers may
need to draw up contingency plans so that, if the risks do oceur, you can take
immediate recovery action,

Q.4 a. Explain the various stages in the general process of an object-oriented

design.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

Answer:

The procons of riak FRMPSOES SNt fa ilustrated 0 15y

{”__ i i
b LT TRy
£

bt ad i
aenkha

I invoheors soverml St e -

Riahk idantification Fonsible project. produot ane Luninass rinhn aro idonnfie,

<. Rismk analysis Tho likalilood and oonSsaagusinces of Ihese ricks oo annoessod

2. Riak planning Mans (0 address tho risk sitFer by avaiding it & minimixing ite offects on
ha project s drawn up

#. Risk monitering The rink is connlanily assoassd and planes for rak miligation mre
rerwitsarcd o mors (NTOrrmaEicsry BBat TN ciak Essrczearmiomn ovvm s B,

- Tha rish manegemant groconn, like s other orolect Elarming, is @mn inforscbives
procons which aantinuss hvoughout the project. Ohsn an initind 5et of plans s
drmwun up, the situation is monilaored. S8 o Tormatian WMot the risks

La el == 10 E

Bacornran avellabie, the riaks have 1o Ba reanalyezad mnd
aRtablinhod. The risk avoldence and contlingendy plans may bo rodiied me new

risk inforrmestion emergoen

Coding 70% complete that can't be checked are useless far project management One can't
check whether this state has been achieved becaysa the amount of code that still has 1o be

developed is uncertain.

A deliverabie js a project result that is delivered to the customer. It is usually delivered at the end
of some major project phase such as specification ar design. Deliverable are usually milestones,
but milestones need not be deliverabiles,

Feasibility »F?iquiremﬂirits Prototypa Design '_Fiequlremunla
lS‘Iud] analysis ‘ daveiopmen study ‘ !paclﬁ;atioﬂ]

Architectural System

w
lFeasrbiul:.r l Requirament
MiLesTones

Milesiones may be internal project results that are used by the project manager to check project
Progress but which are not delivered to the customer

design

To establish milestones, the software process must be broken down into basic aclivities wilh
associgted outpits, For example, Figure shows possible activities involved in requirements
specification when protolyping is used to help validate requiraments. The milestones In this case
are the completion of the oulputs for each activity. The project deliverables, which are dalivered on
the customer, ara the requirements definition aned the requirements specification

b. Explain various key factors that are considered when planning application
system reuse.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

Answer:

Static Analysi i i
alysis iz a verification technique, which aims al detecting erfrors without direct exacution

: ! .
:Illﬂ $t° | ‘E‘ ce I“s lll"que' can an be used FGI ve“f}'l H ﬂtﬂ struciural EJIHIHC!E FE"CS

(A}Source Code
(b)Design Specifications
{C)Any notational representation which has sOme syntax rules.

The semantic testing aclivities are gunerally not considarad during this verification. Tho degign
: . :
pecifications, if are made according 1o some standard notations or some synlax rules or are
T
generated autematically with the help of some tocls which generate fixed forman of spacifications

can be verified with the Static Analysis method.
Errors Examined by Static Analysis :

(iFStructural error, when a variable is initialized on all paths. e
\

{i)Varnables sel but notl or never used. ,%1\
(iilSome program segments isalated and not used, ‘mﬁ
{viMismaich of aclual and formal parameters

(viFormal paramaiers with values byt not used by calling programs.

(wiMot following standard praciices, which s correct In syntax olherwiza?

- Qutside Jump inte loop's body.
- Backward jumps of GOTO statemeant.

Uses/Advantages of static Analysis :

(1) Slatic Analysis provides “warning™ against the errors that are going to happan in

fuitiire.
(2)Static Analysiz somatimes detecta the arrors itself and just, as in case of tlesting not

only detéecls the presence of arrors,

(3) The problems such as unused variables, unreachable code, enreferenced labels
are nol actually the errars in the softwara product, but are indicative of tha fact that
programmer does not understand the program himsell and this may lead 1o an arror

later on whila maintaining or improving the saftware

{4) The symbol table generated during static analysic can provide information for
documentation of programs such as which vanables are invaked., modified and
passed while calling a subroulineg. Diffarenl documents produced by static
analysers can be useful for maintenance or documantation of program.

{5) If separate terms are daveloping differant pars of software, then the arguments or
parameters passed in different modules may mmaleh n number and lypa, This
can be detected by the static analyzer very easily.

(B) As it analyses the overall structure of program, wa can aasily know which
constriucts are used repeatedly. Thus it can be used to evaluate the complexity of a

program

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65

SOFTWARE ENGINEERING

Q.5

Answer:

Q-

b B o R
L T TR

M.

a. Explain the process of Formal specifications in t_he software process. List
various activities that are performed while developing formal

specifications of sub system interface.

5. a.Formal Specification In the software process:

Critical systems development usually involves a plan-based software procass thal is based on the
walerfall model of development. Both the system requiremants ang the syslem design are
exprezsed in detall and carefully analysed and checked before implemeantation begins. If a formal
specification of the software s developed, this usually comes after the system requirements have
been specified but before the detailed system design. There is a tight feadback leop between the
detailed requirements specificalion and the formal specification. One of the main benefits of farmal
specification is its ability fo uncover problems and ambiguities in the system redquirements.

The involvemant of the clisnt decreases and the involvement of the contractor increases as more
detail is added to the system specification. In the early slages of the process, the specification
should be ‘customer-ariented’. Cne should write the specification so that the client can understand
it, and should make as faw assumplions as possible about the software deslgn. However, tha final
stage of the process, which is the construction of a complete, consistant and precise specification
is principally intended for the software contractor, | specifies the daetails of tha system
implementation. A formal language can be used at thig stage to avoid ambiguity in the software
specification.

ystem requiremenis ormal specificalion
I &ecific‘aﬁm i _spacification
S8r requIrements igh = leve
definition [design

[Sysiem [[Architectural I
-+ —
I | n

Figure shows the stage of software specification and its interface with the design process. The
specification stages shown in Figure are not indepandent nor are they necessarily developed in
the sequence shown. Figure shows specification and design activilies that may be carried out in
parallel streams. There is a two-way relationship between each stage in the process, Information
18 fed from the specification to the design process and vice versa. As the detailed specificatinng
are developed, understanding of that specification increases. Crealing a formal specification forces

to make a detailed systems analysis that usually reveals errors and inconsistencies in the informal

requirements specification. This error detection is the most important argumeant for developing a

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65

SOFTWARE ENGINEERING

formal specification. It helps to discover requirements problems that can be very expensive to

correct latter,

Depending on the process used, specification problems discevered during formal analysis might

influence changes to the requirements specification if this has not already been agreed. If the

requirements specification has been agreed and is included in the system development contract,

the problems found with the customer should be raised. It is then up to the customer to decide how

they should be resolved before the start of the system design process.

The process of developing a formal specification of a sub-system interface includes the following

aclhivities.

1.

Specification structure: Organise the information interface specification into a set
of abstract data type or object classes. The operations associated with each class
should be informally defined.

Specification naming: Establish a name for each abstract type specification,
decide whether they require generic parameters and decide on names for the sorts
identified.

Operations selection: Choose a set of operations for each specification based on
the identified interface functionality. Include operations to create instances of the
sort, to modify the value of instances and to inspect the instance values. Add
functions fo those initially identified in the informal interface definition.

Informal operation specification: Write an informal specification of each
operation. Describe how the operations affect the defined sor.

Syntax definition: Define the syntax of the operations and the parameters to each,
This is the signature part of the formal specification. Update the informal
specification at this stage if necessary.

Axiom definition: Define the semantics of the operations by describing what
conditions are always true for different operations combinations.

b. Define and explain Agile Methods. What are Principles of Agile Methods?
Illustrate with the help of taking example of widely used Agile methods.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

Answer:

5.b. Agile Methods:-

* The best way to achieve befler saftware is through carefyl project planning,
formalized quality assurance, the use of analysls and design methods supporied by
CASE tools, and controllad and rigorous software development processes.

"%+ However, when this plan-based development approach is applied to small and
] medium-sized business system, the overhead involved becomes so large that i
ff_e sometimes dominates the software development process. More time is spent on

how the system should be developed than on program development and lesting. As
3 the system requirements changed, rework becomes essential and, in principle at

L] least, the specification and design has to be changed change with the program,

* Dissalisfaction with these heavyweight approaches led a number of software
H developers in the 1990s lo propose new agile methods, Thesa allowed the

development team to focus on the software itself rather than on its design and
documenlation,

|
L

= Agile methods universally rely on an iterative approach to software specification,
development and delivery, and were designed primarily 1o support business
application development whera the system requirements usually changed rapidiy
during the development process. They are intended to deliver working software
quickly to customers, who can then Propose new and changed requirements to be
included in later interaction of the system.

neipl Agile Methods-

| Principle ' | Description =F —|
| Cuslomer Involvement rCusic:iﬂer should be closely involved throughout |

the development process, Their role is o provide |
and priorities new system requirements and o
evaluated the iterations of the system.

Incremental delivery | The software is developed in increments with the |
cuslomer specifying the requirements to be |
included in each increment

|Tha skills of the development team should be
recognized and explofted. Team members should |
be left to develop their own ways of wnrkfng|
i without prescriptive processes.

People not process

| Embrace change | Expect the system requirements to change, so the |

gystem is designed to accommodate lhese|
|r:;hanges. |

. I == : |
Maintain simplicity | Focus on simplicity in both the software being |
|devaropad and in the development process.

Wherever possible actively work fo eliminate |

|| complexity from the system. |
|

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

*» Several server processes can run on a single server processor so there is not necessarily
a 1:1 mapping between processes and processors in the system. Client and servers, are
logical processes rather than the physical computers on which they execute.

* The design of client-server system should reflect the logical structure of the application that
is being developed. One way to look at an application is illustrated in Fig. which shows an
application structured into three layers. The presentation layer is concerned with presenting
information to the user and with all user interaction. The application processing layer is
concerned with implementing the logic of the application, and the data management layer
Is concerned with all database operations. In centralized systems, these need be clearly
separated. However, when a distributed system is designed, a clear distinction should be
made between them, as it then becomes possible to distribute each layer to a different
computer.

4

Presentation layer

,' . Data management

Types of Client-Server Architecture:
1. Two-tier
2. Three-tier

The simplest client-server architecture is called a two-tier client-server architecture, where an
application is organized as a server (or multiple identical servers) and a set of clients.

Types of Two-Tier Architecture:-

1. Thin-client model: In a thin-client model, all of the application processing and data
management is carried out on the server. The client is simply responsible for running the
presentation software.

2, Fat-client model: In this model, the server is only responsible for data management. The
software on the client implements the application logic and the interactions with the system
user.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

L L Lo

Extreme programming:-
» Extreme programming (XP) is the best known and most widely used agile methods

+ Exlreme programming involves a number of practices, summarized in Fig. that fit into the
principles of agile methods:-

+ Incremental development is supported through small, frequent release of the system and
by an approach to requirements description based on customer stories or scenarios that
can be the basis for process planning.

2. Customer involvement is supported through the full-time engagement of the customer in
the development team. The customer representative takes part in the development and is
responsible for defining acceptance tests for the system.

3. People, not process, are supported through pair programming, collective ownership of the
syslem code, and a sustainable development process that does not involve excessively

long working hours.
4. Change is supported through regular system releases, tesi-first development and

continuous integration.
5. Maintaining simplicity is supported through constant refactoring to improve code quality
and using simple design that do not anticipate future changes to the system,

Q.6 a. Describe Client-Server architecture. What are various types of Client-
Server Architecture? Explain.

Answer:

6.a. Client-Server Architectures:-

+ |n a client-server architecture, an application is modeled as a sel of services thal are
provided by servers and a set of clients that use these services.

s Clients need to be aware of the servers that are available but usually do not know of the
existence of other clisnts. Clients and servers are separale processes, as shown in Fig.,
which is a logical model of distributed clienl-server architecture,

Sarrr g v

CHand proceus

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

* Several server processes can run on a single server processor so there is not necessarily
a 1:1 mapping between processes and processors in the system. Client and servers, are
logical processes rather than the physical computers on which they execute.

* The design of client-server system should reflect the logical structure of the application that
is being developed. One way to look at an application is illustrated in Fig. which shows an
application structured into three layers. The presentation layer is concerned with presenting
information to the user and with all user interaction. The application processing layer is
concerned with implementing the logic of the application, and the data management layer
iIs concerned with all database operations. In centralized systems, these need be clearly
separated. However, when a distributed system is designed, a clear distinction should be
made between them, as it then becomes possible to distribute each layer to a different
computer.

' Presentation layer

Application processing
layar

{
3 Data management
e s layer

Types of Client-Server Architecture:

1. Two-tier
2. Three-tier

The simplest client-server architecture is called a two-tier client-server architecture, where an
application is organized as a server {or multiple identical servers) and a set of clients.

Types of Two-Tier Architecture:-

1. Thin-client model: In a thin-client model, all of the application processing and data
management is carried out on the server. The client is simply responsible for running the
presentation software,

2. Fat-client model: In this model, the server is only responsible for data management. The
software on the client implements the application logic and the interactions with the system
user.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

Presantation

o g = m.f'l

Application processing :
| ot f

Presentation L W

Pat-clont Application processing e mﬁﬁiﬁ

model - Data managemant

Thin-Client Model:

A thin-client, two-tier architecture is the simplest approach to use when centralized
legacy systems, are evolved to client-server architecture. The user interface for
these systems is migrating to PCs, and the application itself acts as a server and
handles all application processing and data management.

A thin-client model may also be implemented when the client are simple network
devices rather than PCs or workstations. The network device runs an Internet
browser and the user interface implemented through that system.

A major disadvantage of the thin-client model is that it places a heavy processing
load on both the server and the network. The server is responsible for all
computation, and this may involve the generation of significant network traffic
between the client and the server. There is a lot of processing power available in
modern computing devices, which is largely unused in the thin-client approach.

Fat-Client Model:

A fat-client model makes use of the available processing power and distributes both
the application logic processing and the presentation to the client. The server is
essentially a transaction server that manages all database ftransactions. An
example of this type of architecture is banking ATM systems, where the ATM is the
client and the server is a mainframe running the customer account database. The
hardware in the teller machine carries out a lot of the customer-related processing
associated with a transaction.

The problem with a two-tier client-server approach is that the three logical layers-
presentation, application processing and data management- must be mapped onto
two systems-the client and the server. There may either be problems with scalability
and performance if the thin-client model is chosen, or problems of system
management of the fat-client model are used. To avoid these issues, an alternative
approach is to use three-tier client-server architecture. In this architecture, the
presentation, the application processing and the data management are logically
separate processes that execule on different processors.

An Internet banking system is an example of the three-tier client-server
architecture.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

SOFTWARE ENGINEERING

DC 65
Pressntation
.E : - . .l_d.l_".
Application — Data
Processing management
(G) s i
Client Wab server =L Database sarver I
Account service il S0 c;'::ﬂ":r
Pravieont database
Client
b. Write advantages and disadvantages of a shared repository.
Answer:
6h. WALK-THROUGH VIS5 INSPECTION
| Sr.Na. | Walk-through ' [Inspection =
)] s a litle informal because s aim | It is more formal and aims at gquality

ig= to train juniors or inform | improvement
somebody about modsl or shw,

It is done usually when the code or | It is perdormed al different stages ta
module is complata, maonitor and control guality.

(3 The producer informs for a walk | It is identified and scheduied is ihe |
planning stags itealf,

through,
S Preparation is done only 2 — 3 hrs. | Experis prepara privately first and then |
belore meeting, raise issues in formal meeting.
5 Team is limited 3 — 7 people. Some | Al least 4 peoplas are in a team and
of the members are there only for | each have to play an active and definite
learning and training. role. i
8 "The errors found are nol la be cycle | Although suggestions are not given here
back. also bul errors found In inspections can
be cycled back to programmer because
the aim is to improve quality
Kis B It improves team communication | It may or may not involve all the leam
and Iimproves project morale | members of SDLC,
becausea all the developars
panicipate.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

Q.7 a. What are different approaches used for user interface prototyping. Explain.

Answer:

L} = L =
g e e
T.a. User Interface prototyping ﬂﬂ.u L
Bacausa of the dynamic nature of user intérfaces, textual desariptions and diagrams are nol good
encugh for expressing user interface requircments. Evolutionary or exploratory protolyping with
end-usear involvemeant is the only practical way o design and develop graphical user interfaces for
software systaems. Involving the user in the design and developmen! process is an essenlial aspect
of user-coentrod design |

The aim of protolyping is 1o allow users o gain direcl éxpearience with the interface, It is difficull to
think abstraclly aboul a user interface and o axplain exacily what is required. Howeavern whan

presented wilh examples, it 13 easy Lo idenlily the characterislics thal are liked or disliked.
When prototyping a user interface, a lwo-stages protolyping process should be adopted:

1 Veary early in the process, develop paper protolypes — mock-ups ol screen design = and
walk through these with end-users.,

2. Than refine your design and devalop increasingly sophisticated automated protolypes, then
make them available to users for testing and activily simulation

Faper prolotyping i a cheap and effective approach o prololype developments. Thoere s no need
o develop executable software and the design doesn’t have 1o be drawn to professional
standards. Paper versiong of tha system screana that usara interact with can ba drawn and a set
of scenarios describing how the sysierm mighti be used can be designed As a scenario
progresges, the information is sketched that would be displayed.

Then work through these scenarios with users to simulate how the systam might ba used. This is
an information that is naeded from the system which helps in offective intaraction with the system

Approaches for user interface prototyping:

1. Script-driven approach If you simply nead o axplore ideas with users, you can
usé a script-driven approach such as in Macromeadia Director. In this approach,
soreens are created with visual elements, such as buttons and menus, and a scnpl
Is associated with these slements When the usear interacts with thess sareans, tha
soripl is executed and the next screen i presented, showing them the reasults of
their aclions, There is no application logic involved.,

2. Visual programming languages Visual programming languages, such as Visual
Basic, incorporate a powerful developmen! environmenl, acocoss 1o a range of

reusable objects and a user-interface development system that allows interfaces to
be created quickly, with components and scripts associated with interface objects.

3. Internet-based prototyping These solutions, based on web browsers and
languages such as Java, offer a ready-made user interface. Functionalities are
added by associating segments of Java programs with the information to be
displayed. These segments (called applets) are executed automatically when the
page is loaded into the browser, This approach is a fast way to develop user
interface prototypes, but there are inherent restrictions.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

b. Components are usually developed using object oriented approach.
Explain how components differ from objects.

Answer:

7.b. Key factors that are considered when planning reuse are:-

1 The development schedule for the software If the softwara has to be developed
quickly, reuse off-the-shelf systems should be used rather than individual
components. These are large-grain reusable assets. Although the fit 1o
requirements may be imperfect, this approach minimizes the amount of
development required.

2. The expected software lifetimes If a long-lifetime system is being developed, the
focus should be on the maintainability of the system. In those circumstances, ane
should not just think about the immadiate possibilities of reuse but also the long
term implications. We will have ta adapt the system to new requirements, which will
mean making changes 1o components and how they are used. If we do not have
access to the source code, we should avoid using companents and systems from

external suppliers.

3 The background, skills and experience of the development team All reuse
technologies are fairly complex and we need quite a Iot of time to understand and
use them effectively. Theretore, if the development team has skills in a particular
area, this is prabably where we should focus.

4. The criticality of the software and its non-functional requirements For a critical
system that has to be certified by an external regulator, we may have to create a
dependability case for the system. This is difficult if we don'l have access to the
source code of the software. If your software has stringent performance
requirements, it may be impossible to use strategies such as reuse through
program generators. These systems tend to generate relatively inefficient code.

5. The application domain In some application domains, such as manufacturing and
medical Informalion syslems, there are several generic products that may be
reusad by configuring them 1o a local situation. If we are working in such a domain,
we should always consider these an option.

g. The platform on which the system will run Some components models. such as
COM/Active X, are specific to Microsoft platforms. If we are developing on such a
platform, this may be the most appropriate approach. Similarly, generic application
systems may be platform-specific and we may only be able to reuse these if our
system is designed for the same platform.

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

Q.8

a. What are different levels of testing? List various goals of different levels,
for each level specify which of the testing approaches is most suitable.

Answer:

8.a. Testing Process

The basic goal of the software development process is to produce software that has no errors or
very few errors. In an effort to detect errors soon after they are introduced each phase ends with a
verification activity such as a review. Most of these verification activities in the early phases of
software development are based on human evaluation and cannot detect all the errors. This
unreliability of the quality assurance activities in the early part of the development cycle places a
very high responsibility on testing. In other words, as testing is the last activity before the final
software is delivered, it has the enormous responsibility of detecting any type of error that may be
in the software.

A software typically undergoes changes even after it has been delivered. And to validate that a
change has not affected some old functionality of the system, regression testing is done. In
regression testing, old test cases are executed with the expectation that the same old results wil
be produced. Need for regression testing places additional requirements on the testing phase; it
must provide the “old” test cases and their outputs.

Testing has its own limitations. These limitations require that addiional care be taken while
performing testing. As testing is the costliest activity in software development, it is important that it
be done efficiently.

All these factors mean that testing should not be done on-the-fly, as is sometimes done. It has to
be carefully planned and the plan has to be properly executed. The testing process focuses on
how testing should proceed for a particular project.

Levels of Testing

Testing is usually relied upon to detect the faults remaining from earlier stages, in addition to the
faults introduced during coding itself. Due to this, different levels of festing are used in the testing
process, each level of testing aims to test different aspects of the system,

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

The basic levels are unit testing, integration testing, and system and acceptance testing.
These different levels of testing attempt to detect different types of faults. The relation of the faults
introduced in different phases, and the different levels of testing are shown in Figure.

Client Needs * * Acceptance Testing

Reguirements +———————* System Testing

Dresign " Integration Testing

Code " Unit Testing

The first level of testing is called unit testing. In this, different modules are tested againsl the
specification produced during design for the modules. Unit lesting is essentially for verification of
the code produced during the coding phase, and hence the goal is to test the internal logic of the
modules. It is typically done by the programmer of module. A module is considered for integration
and use by others only after it has been unit tested satisfactorily.

The next level of testing is often called integration testing. In this, many unit tested modules are
combined into subsystems, which are then tested, The goal here is to see if the modules can be
integrated properly. Hence, the emphasis is on testing interfaces between modules. This lesting
activity can be considered for testing the design.

The next levels are system testing and acceptance testing. Here the entire software system is
tested. The reference document for this process is the requirements document, and the goal is to
see if the software meets its requirements. This is essentially a validation exercise, and in many
situations it is the enly validation activity. Acceptance testing is sometimes performed with realistic
data of the client to demonstrate that the software is working satisfactorily. Testing here focuses
on the external behaviour of the system: the internal logic of the program is not emphasized.
Consequently, mostly functional testing is performed at these levels,

These levels of testing are performed when a system is being built from the components that have
been coded. There is another level of testing called regression testing, that is performed when
some changes are made to an existing system. Changes are fundamental to software: any
software must undergo changes. Frequently a change is made to “upgrade” the software by
adding new features and functionality. Clearly, the modified software needs to be tested to make

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

W R e B W

made o an existing system, testing also has to be done to make sure that the modification has not
had any undesired side effect of making some of the earlier services faulty. That is, besides
ensuring the desired behavior of the new services, testing has to ensure that the desired behavior
of he old services is maintained. This is the task of regression testing

Far regression lesling, some test cases that have been executed on the old system are
maintained, along with the output produced by the old system. These tes! cases are execuled
again on the modified systemn and its output compared with the earlier outpul to make sure that the
system I working as before on these test cases. This frequently is a major task when
maodifications are o be made to exisling syslems,

A consequence of this is that the test cases for system should be properly documented for future
use In regression testing. In fact, for many systems that are frequently changed, regression testing
scripts are used, which automate pedorming regression testing after some changes. A rEgression
testing script axecutes a suite of test cases, For each test case, it sels the system state for testing.
execules the test case,. determines system slate or output against expected values, These scripls
are typically produced during system state testing, as regression tesling is generally done only for
complete systems. VWhan the system is modified, the scripts are executed again, giving the inputs
specified in the scripts and comparing the cutputs with the oulputs given in the scripts. Given the
scripts, through the use of tools, regression tesling can be largely automated.

b. Explain the term “Software Inspection”. List major advantages of inspection
over testing.

Answer:

8. b. Software Requirements Specification(SRS):

+*Requirements documentation is very important activity after requirement analysis. The goal
of the reguiremeanis activity is to produce a Software Requiraments Specificalion(SRS) thal
describes what the proposed software should do without daseribing how the software will
do it.

+5RS is a specification for a particular software product program or a set of programs that Is
supposed to perform certain functions in 8 specfied anvironmeant.

*SRS is a reference document that acts as a contract batwean developer and custemer and
is used to resclve any disagreement which may arise in fulure. Once the customer is
agreed to the SRS documentthe developer stars developing the product as per the
requiremenis mentioned in the SRS,

MNeed for SRS:

+5R5 establishes the basis for agreement between clenl and the supplier on what the
software product will do. ¢

*SRE provides a referance for validation of final product,

#A high quality SRS Is a prerequisite to high quality software

=A high guality SRS reduces the development cosl.

Characteristics of a Good SRS:

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

«Correctness: SRS is said o be correct if and only il every requiremeant statled in ilis mel by
software e.g. il a software s supposed lo perform a particular task at a particular instance
of time and it Is responding at some other instance of time then the requirements is
mcomect,

+Complatenass: SRS s sald to be complata il and only if it constitutas the following elemeants:

+All Important requirements relating to functionality performance, design
constraints and external interfaces.

sResponses/Oulpul lo both valid and invalid input values e, it should include all
realizable classes of input data in all realizable classes of situations.

sUnambiguocusness: SRS is said to be unambiguous if and only If avery requirement stated in
it has only one interpretation. Each writlten senlence in the SRS should have a unigue
interpretation SRS should ba unambiguous for both author and user imespective of heir
technical background. Requirements are generally written in natural language such as
English. Natural language s itself ambiguous. Matural language SRS should be reviewed
by an independent party for identification of ambiguous use of language so that it can be
correctad. This can be avoided by using particular requirement specification language
whose language processor can automatically detect lexical.syntactic and semantic arrors.

«Consistent: SRS & consistent il and only if individual requirements documentad in it don?
have any conflict.

Types of Conflicts:

i.Tha spacified characteristics if objects may conflict e.g. the format of an ocutput report
may be tabular in one requirement and taxtual in anather requiremant.
il.There may be logical conflict betwean twe specified acltions e.g. one requirement may
apecify tha program for addition of two numbers an another requirement may
apecify the program for multiplication.
iii. Two or more requirements may describe the same object but diffarant tenms ane used
for thal objecl. Use of standard terminology and definilions ensurés Consistency.

«Modifiable: SRS shauld be wall structurad and aasily modifiable. SRS is said to be modifliable
if and only if its structure is such that any changes to the requirements can be made
eaelly. completely and consistently withoutl disturbing the struclure. The requirements
should not ba redundant as it can lead o errors. Sometimes redundancy heips in making
SRS more readable but problem arises when redundant document is updaled as
requirements may be altered at one place but remains as it is al some other place. As a
result 3RS becomas inconsislent.

«Veriflable: SRS is verifiable if and only il every requirement documentad in it can be. easily
varified. For a SRS to be verifiable.it should be unambiguous, Non verifiable requiraments
include siatements such as “works fine”,"good human inlerface” etc. The requirenents
consisling of these sistements can't be verifiable as it i3 impossible 1o define the terms
“fine” and “good”,

«Traceable: SRS is said to ba traceabla If the erigin of each of the reguirement is clear and if it
facilitates the referencing of each requirement in future developrmant.

Types of Tracecability: Mo DERATIi™ & ""f;ﬁl

I.Backward Traceability: it Includes every requirament explicitly referancing its source
in previous docurmant,

il Ferward Traceability: It includes each requirement In SRS having a unigue name or
reference number.

=Maintainability, Portability and Adaptability:

i.Maintainability is the collection of qualities which deals with how much easily the
sysiem can be changed.
il. Portability: ensures using & system under new oparaling system or a new hardware
platform
iii.Adaptability: flexibility of the system to meet with predictable new requirements e.g. a
payrell program should be adaptable to yearly changes in tex structure and
Dearness allowance,

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65

SOFTWARE ENGINEERING

Q.9 a Define and explain Release Management. Explain various factors that
influence system release strategy.

Answer:

9.a. SOFTWARE INSPECTION

Software inspection is a static Verification & Validation process in which a software system is
reviewed to find errors, omissions and anomalies. Generally, inspections focus on source code,

but any readable representation of the software such as its requirements or a design model can be

inspected. When a system is inspected, knowledge of the system, its application domain and the

programming language or design model is used to discover errors.

(7)

(8) Live variable Problem. can be detected, in which a varia
kept on left side of assignment statement)
using previous value (

During testing, errors can mask (hide) other errors. Once one error is discovered
user can never be sure if other output anomalies are due to a new error or are side
effects of the original error. Because inspection is a static process, user don't have
to be concerned with interactions between errors. Consequently, a single inspection

session can discover many errors in a system

Incomplete versions of a system can be inspected without additional costs. If a
program is incomplete, then user needs to develop specialized test harnesses to
test the parts that are available. This obviously adds fo the system development

costs.

As well as searching for program defects, an inspection can also consider broader
quality attributes of a program such as compliance with standards, portability and
maintainability. User can look for inefficiencies, inappropriate algorithms and poor
programming style that could make the system difficult to maintain and update.

As the standards are followed, hence a program in one language can straightly
converted to similar construct in other language. So the portability of program
increases.

ble is aésigned value (i.e.

and again assigned new Value, without
.. variable never came on right side)

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC 65 SOFTWARE ENGINEERING

b. Define and explain various static software product metrics.
AnSWEFZ . TSR RRMREALR e DI AN DY BIOE).

9.b. Static Software product metrics:
(1) Fan-in-out

Fan-in is a measure of the number of functions or methods that calj
some function ar method (say X). Fan-out is the number of functions thal are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the design
and changes to X will have extensive known-on effects, A high vale fan-out suggests that
the overall complexily of X may be high because of the complexity of the control logic
needed to coordinate the cafled components.

{ii)Length of code:

This is a measure of the size of @ program. Generally, the larger the
size of the code of a component, the more complex and error prone thal component is
likely to be. Length of code has been shown to be one of the most reliable metrics for
predicling error pronensss in companants

(iii) Cyelomatic complexity:
This is a measure of the cantrol complexity of a program. This confrol
complexity may be related to program understandability.
(W)Lengths of identifies -

This is a measure of the average length of distinct identifies in a
pregram. The longer the identifiers, the more likely they are be meaningful and hence the more

understandable the program.
(v)Depth of conditianal -

This is a measure of the depth of nesting of if nesting statements in a
program. Deeply nested if statements are hard to understand and are potentially error — prong.
(vi)Fog index :

This is a measure of the average length of words and sentences in
documents . The higher the value for the Fog index the more difficult the document is to

understand,

TEXT BOOK

Software Engineering, lan Sommerville, 7" edition, Pearson Education, 2004

www. StudentBounty.com
-Homework Help & Pastpapers

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

