# Student Bounty.com a. Prove by mathematical induction $n^4 - 4n^2$ is divisible by 3 for $n \ge 0$ . **Q.2 Answer:**

**Basic step:** For n = 0,  $n^3 - n = 0$  which is divisible by 3.

**Induction hypothesis:** Let  $p(n) = n^3 - n$  is divisible by 3.

**Induction step:** Let us prove this for (n+1) also.

Then 
$$p(n + 1) = (n + 1)^3 - (n + 1)$$
  
=  $(n^3 + 3n^2 + 3n + 1) - (n + 1)$   
=  $n^3 + 3n^2 + 3n - n$   
=  $(n^3 - n) + 3(n^2 + n)$ 

Now  $(n^3 - n)$  is divisible by 3 as p(n) is true by induction hypothesis. Also  $3(n^2 +$ n) is a multiple of 3 and hence divisible by 3.

Thus  $p(n) = n^3 - n$  is divisible by 3 for all n > 0.

b. What is the need to study Automata Theory in computer science?

# **Answer: Page Number 6, 7 of Text Book**

#### **Q.3** a. Minimize the following DFA having state $q_5$ as final state:

| Present | Next State |         |
|---------|------------|---------|
| State   | Input 0    | Input 1 |
| $q_0$   | $q_1$      | $q_2$   |
| $q_1$   | $q_3$      | $q_4$   |
| $q_2$   | $q_5$      | $q_6$   |
| $q_3$   | $q_3$      | $q_4$   |
| $q_4$   | $q_5$      | $q_6$   |
| $q_5$   | $q_3$      | $q_4$   |
| $q_6$   | $q_5$      | $q_6$   |

# **Answer:**

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$
, since  $q_5$  is the final state.

$$\Pi_0 = (q_5, Q - q_5)$$
 is the 0-equivalence class.

# **Construction of 1-equivalence class:**

As 
$$\delta(q_0, 0) = q_1$$
 and  $\delta(q_0, 1) = q_2$ , and both  $q_1$  and  $q_2$  are non final states.  $\delta(q_1, 0) = q_3$  and  $\delta(q_1, 1) = q_4$  and both  $q_3$  and  $q_4$  are non final states.

Thus 
$$q_0 \equiv q_1$$

Proceeding in the same way,  $q_0 \equiv q_3$ 

Thus 
$$q_0 \equiv q_1 \equiv q_3$$

Again 
$$\delta(q_2,0)=q_5$$
 and  $\delta(q_4,0)=q_5$  and  $\delta(q_4,1)=q_6$ , and  $\delta(q_2,1)=q_6$ , Hence  $q_2\equiv q_4$  and also  $q_4\equiv q_6$ 

Thus  $\Pi_1 = [\{q_5\}, \{q_0, q_1, q_3\}, \{q_2, q_4, q_6\}]$  is the 1-equivalence class.

Similarly  $\Pi_2 = \{\{q_5\}, \{q_0, q_1, q_3\}, \{q_2, q_4, q_6\}\}\$  is the 2-equivalence class also.

Hence we have constructed the minimized sate automata as:

 $Q = \{[q_0, q_1, q_3], [q_2, q_4, q_6], [q_5]\}$  and transition table is given below:

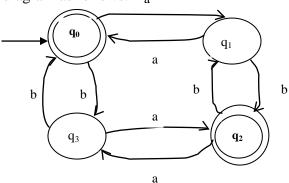
| State             | Input        |                   |
|-------------------|--------------|-------------------|
|                   | 0            | 1                 |
| $[q_0,q_1,q_3]$   | $[q_0, q_1,$ | $[q_2,q_4,q_6]$   |
|                   | $q_3$        |                   |
| $[q_2, q_4, q_6]$ | $[q_5]$      | $[q_2, q_4, q_6]$ |

| $[q_5]$ | $[q_0, q_1,$ | $[q_2,q_4,q_6]$ |
|---------|--------------|-----------------|
|         | $q_3$        |                 |

Student Bounts, com b. Design a finite automata for the language  $L = \{w | w \text{ is of even length and } \}$  $w \in (a, b)^{\hat{}}$ .

## **Answer:**

We design the transition diagram as follows: a



Where  $q_0$  and  $q_2$  are the two final states.

Hence the finite machine is defined as:

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = (a, b)$$

 $\delta$  is the transition function given above.

 $q_0$  is the initial state.

 $q_0$  and  $q_2$  are the two final states.

#### **Q.4** a. Let $V_N = \{S, B\}, V_T = \{a, b\}, P = \{S \rightarrow aBa, B \rightarrow aBa, B \rightarrow b\}.$ Find the language L(G) generated by the given grammar.

# Answer:

From the given productions we have:

$$S \rightarrow aBa \rightarrow aba$$
, hence  $aba \in L(G)$ .

$$S \to aBa \to aaBaa \to aaaBaaa \to ..... \to aa...aBaa...a \to a^nba^n \in L(G).$$

Hence { aba, aabaa, 
$$a^3ba^3,..., a^nba^n$$
} = { $a^nba^n | n \ge 1$ }  $\subseteq L(G)$  .....(1)

To show that  $L(G) \subset \{a^nba^n \mid n \ge 1\}$ , we start with  $w \in L(G)$ , the derivation of w starts with S. If  $S \rightarrow aBa$  is applied first and then  $B \rightarrow b$ , we get w =aba. On the other hand if we apply  $B \rightarrow aBa$  ((n-1) times) and then finally to terminate this we apply  $B \rightarrow b$ , then w will be of the form  $a^n b a^n$ ,

So 
$$w \in \{aba, aabaa, a^3ba^3,..., a^nba^n\}$$
. Hence  $L(G) \subseteq \{a^nba^n \mid n \ge 1\}$ .....(2)

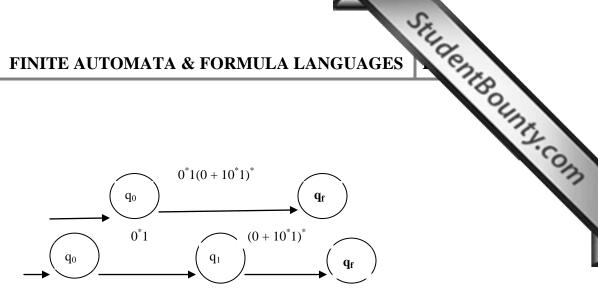
By (1) and (2) we have 
$$L(G) = \{a^nba^n \mid n \ge 1\}.$$

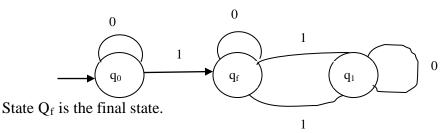
b. Obtain the NFA without epsilon transition corresponding to the following regular expression:

$$0^*1(0+10^*1)^*$$

#### Answer:

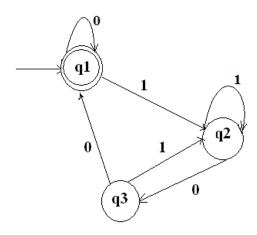
Let us construct the NFA as follows:





Hence the NFA  $M = (\{q_0, q_1, q_f\}, \{0, 1\}, \delta, \{q_0\}, \{q_f\})$ , the transition function  $\delta$  is given above.

**Q.5** a. Construct a regular expression corresponding to the state diagram given below



### **Answer:**

There is only one initial state. Also, there are no null moves. The equations are:

$$\begin{aligned} q_1 &= q_1 0 + q_3 0 + \wedge \dots \dots (1) \\ q_2 &= q_1 1 + q_2 1 + q_3 1 \dots \dots (2) \\ q_3 &= q_2 0 \dots \dots (3) \end{aligned}$$

So, 
$$q_2 = q_1 1 + q_2 1 + (q_2 0)1 = q_1 1 + q_2 (1 + 01)$$
 (put  $q_3$  from eq. 3 to eq.2)  
Applying Arden's theorem, which says if there is an equation in regular expressions P, Q and R as  $R = Q + R.P$ , then the solution is given by  $R = Q.P^*$ .  $q_2 = q_1 1.(1 + 01)^*$ 

Also we have

$$q_1 = q_1 0 + q_3 0 + \wedge = q_1 0 + (q_2 0) 0 + \wedge$$
 (by eq. (3))

Put the value of  $q_2$  here which we have obtained above,

FINITE AUTOMATA & FORMULA LANGUAGES

e have
$$q_1 = q_10 + q_30 + \wedge = q_10 + (q_20)0 + \wedge \text{ (by eq. (3))}$$
e value of  $q_2$  here which we have obtained above,
$$q_1 = q_10 + (q_11(1+01)^*00) + \wedge$$

$$= q_1(0+1(1+01)^*00) + \wedge$$
Thus  $q_1 = \wedge ((0+1(1+01)^*00)^* = (0+1(1+01)^*00)^*$  (By Arden's

Theorem)

As q<sub>1</sub> is the only final state, the regular expression corresponding to the given diagram is  $(0 + 1(1 + 01)^{\hat{}}00)^{\hat{}}$ .

Consider the following productions representing regular grammar G,

$$S \rightarrow aA \mid a$$
  
 $A \rightarrow aA \mid aB \mid a$   
 $B \rightarrow bB \mid c$ 

Find the regular expression corresponding to regular grammar G.

## Answer:

Let us construct the language by the given productions:

Hence 
$$L = \{a^n b^m U \ a^n b^m c \mid n \ge 1, \ m \ge 0\}$$

It's regular expression can be written as  $\mathbf{a}^{\dagger}\mathbf{b}^{*} + \mathbf{a}^{\dagger}\mathbf{b}^{*}\mathbf{c} = \mathbf{a}^{\dagger}\mathbf{b}^{*}(\varepsilon + \mathbf{c})$ .

**Q.6** a. Construct a PDA to accept strings containing equal number of 0's and 1's by null store. Show the moves of the PDA for the input string '011001'.

### **Answer:**

Let  $M = \{(q_0, q_1), \Sigma = (0, 1), (a, b, Z_0), \delta, \{q_f\}, q_0, Z_0\}$  where  $Z_0$  is the special stack symbol which says that stack is empty.

Now we write the push and pop operations as follows:

# **Push Operations:**

$$1.\delta(q_0, 0, Z_0) = (q_0, 0Z_0)$$

$$2.\delta(q_0, 1, Z_0) = (q_0, 1Z_0)$$

$$3.\delta(q_0, 0, 0) = (q_0, 00)$$

$$4.\delta(q_0, 1, 1) = (q_0, 11)$$

This operation will store 0's or 1's in the stack.

# **Pop Operations:**

$$1.\delta(q_0, 0, 1) = (q_0, ^)$$

$$2.\delta(q_0, 1, 0) = (q_0, ^)$$

$$3.\delta(q_0, ^{\land}, Z_0) = (q_f, ^{\land})$$
 (Accepting by null store)

This operation will remove 0's corresponding to 1's on input tape and vice-versa. This is the required PDA.

Now the processing of the given string "011001" as follows:

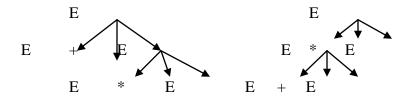
 $(q_0, 01, Z_0)$  |----  $(q_0, 1, 0Z_0)$  |----  $(q_0, ^, Z_0)$  =  $q_f$  (the final state). Hence the given sting is accepted by the designed PDA.

b. What is ambiguity? Show that  $S \rightarrow aS \mid Sa \mid a$  is an ambiguous grammar.

# **Answer:**

Student Bounty Com **Ambiguity in CFG:** A grammar is said to be ambiguous if for any string we have two left or right most derivation trees.

For example,  $E \rightarrow E + E \mid E * E$  can generate string E + E \* E in two ways



Two derivation trees with same yield

Now to show that  $S \to aS \mid Sa \mid a$  is ambiguous we need to construct two different trees for same string say w = aaaa.

$$S \rightarrow aS \rightarrow aaS \rightarrow aaaS \rightarrow aaaa$$
 (by  $S \rightarrow aS \mid a$ ) .....(1)

$$S \to Sa \to Saa \to Saaa \to aaaa \qquad \qquad (by \ S \to Sa \ | \ a) \ \ldots \ldots (2)$$

Hence there exist two different ie; one left most and another right most derivation trees for the given grammar, hence it is ambiguous.

**Q.7** a. What are applications of pumping lemma in Chomsky's normal form? Convert the given grammar into Chomsky's Nf.

 $S \rightarrow ASB, A \rightarrow aAS \mid a, B \rightarrow SbS \mid bB$ 

**Answer: Page Number 127 of Text Book** 

b. Find a reduced grammar equivalent to  $G = (V_N, \Sigma, P, S)$  where set P is given as follows:

$$S \rightarrow AB,\, A \rightarrow a,\, B \rightarrow b \mid C,\, D \rightarrow c$$

**Answer:** 

Step 1(Removal of extra variables)

Construction of  $V_N$ :

Let us construct  $W_1 = \{A, B, D \mid as A \rightarrow a, B \rightarrow b \text{ and } D \rightarrow c \text{ are} \}$ productions with a terminal string on the R.H.S. }

$$W_2 = W_1 \cup \{X \in V_N \mid X \to \alpha \text{ for some } \alpha \in (W_1^* \cup \Sigma)\}$$
  
= \{ S, A, B, D\}

Similarly  $W_3 = W_2 \cup \{X \in V_N \mid X \to \alpha \text{ for some } \alpha \in (W_2^* \cup \Sigma)\} = W_2$  $\cup \phi = \mathbf{W}_2$ 

Therefore  $V_N' = \{S, A, B, D\}$  and hence  $P' = S \rightarrow AB, A \rightarrow a, B \rightarrow b, D$  $\rightarrow$  c.

Thus 
$$G' = (V_N, \Sigma, P, S)$$

Step 2(Removal of useless productions)

Construction of  $V_N$ :

$$W_1 = \{S\}$$

Student Bounty.com  $W_2 = W_1 \cup \{X \in V_N \cup \Sigma \mid \text{there is a production } A \to \alpha \text{ with } A \in W_1 \text{ and } \alpha \}$ containing X}

$$W_2 = \{S\} \cup \{A, B\} = \{S, A, B\}$$

$$W_3 = W_2 \cup \{a, b\} = \{S, A, B, a, b\}$$

$$\mathbf{W}_4 = \mathbf{W}_3$$

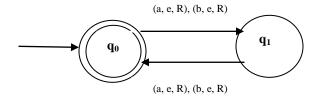
Thus 
$$V_N$$
 = {S, A, B} and P' = S  $\rightarrow$  AB, A  $\rightarrow$  a, B  $\rightarrow$  b.

Hence reduced grammar G" =  $\{V_N = \{S, A, B\}, \Sigma = (a, b), P, S\}$ 

**Q.8** a. Design a Turing machine that recognizes all strings of even length over  $\Sigma = (a, b)^*$ 

#### **Answer:**

We construct the machine as follows:



To accept all strings over (a, b) of even length, we need two states to construct a loop from one to another. Let  $q_0$  be the initial and final state. On reading either a or b at state  $q_0$  machine goes to  $q_1$  writes e (empty) on the input tape and moves to right direction. Similarly On reading either a or b at q<sub>1</sub> machine writes e (empty) on the input tape goes to state  $q_0$  and moves to right direction. Hence it accepts all strings of even length over (a, b)\*.

Hence TM M =  $\{(q_0, q_1), (a, b), q_0, \delta, \Gamma = (a, b, e), (L / R), \{q_0\}\}$  where the transition function  $\delta$  is defined as above. It can be defined as transition table as follows:

|   | State                   | Input              |                    |
|---|-------------------------|--------------------|--------------------|
|   |                         | a                  | b                  |
| _ | <b>→</b> q <sub>0</sub> | e,R,q <sub>1</sub> | e,R,q <sub>1</sub> |
|   | $q_1$                   | e,R,q <sub>0</sub> | e,R,q <sub>0</sub> |

b. Write short note on universal Turing machine.

## **Answer:**

A universal Turing machine is one that can be used to simulate any other Turing machine.

There exists a \universal" Turing machine U that, on input <M, w> where M is a TM and w is a sting over  $(0, 1)^*$ , simulates the computation of M on input w. Specifically:

- 1. U accepts <M, w> iff M accepts w
- 2. U rejects <M, w> iff M rejects w

**Q.9** a. Prove that if a language L and it's complement L' are both recursively enumerable, then L is recursive.

#### Answer:

will

not a

but it is accepts

Student Bounty.com Let  $TM_1$  and  $TM_2$  accept L and L' respectively. Let us construct a turing machine TM which simulate TM<sub>1</sub> and TM<sub>2</sub> simultaneously. TM accepts w if TM<sub>1</sub> accepts it and rejects w if TM<sub>2</sub> will accepts it. Thus TM always say either "yes" or "no", but not both. Note that there is priority limit on how long it may take before TM<sub>1</sub> or TM<sub>2</sub> accepts, certain that one or the other will do so. Since TM is algorithm that L, it follows that L is recursive.

> $TM_1$ Yes w Yes

Define Post corresponding Problem (PCP). Check whether the following instance has no solution over  $\Sigma = \{0, 1\}$ . X and Y be the lists of the three strings as follows:

|   | List A | List B |
|---|--------|--------|
| i | Wi     | Xi     |
| 1 | 1      | 111    |
| 2 | 10111  | 10     |
| 3 | 10     | 0      |

### **Answer:**

PCP: An instance of PCP consists of two lines of strings over some alphabet  $\Sigma$ ; the two lists must be equal length. We generally refer to the A and B lists, and write  $A = w_1, w_2, ..., w_k$  and  $B = x_1, x_2, ..., x_k$ , for some integer k. For each i, the pair  $(w_i, x_i)$  is said to be a corresponding pair.

We say this instance of PCP has a solution, if there is a sequence of one or more integers i<sub>1</sub>,i<sub>2</sub>,..., i<sub>m</sub> that, when interpreted as indexes for strings in the A and B lists, yield the same string. That is,  $w_{i1}w_{i2}...w_{im} = x_{i1}x_{i2}...x_{im}$ . We say the sequence i<sub>1</sub>, i<sub>2</sub>, ...,i<sub>m</sub> is a solution to this instance of PCP, if so. The Post correspondence problem is:

"Given an instance of PCP, tell whether this has a solution." Consider the problem given above

|   | List A | List B |
|---|--------|--------|
| i | Wi     | Xi     |
| 1 | 1      | 111    |
| 2 | 10111  | 10     |
| 3 | 10     | 0      |
|   |        |        |

Let m = 4,  $i_1 = 2$ ,  $i_2 = 1$ ,  $i_3 = 1$ , and  $i_4 = 3$ , i.e; the solution is the list 2, 1, 1, 3. This list is a solution by concatenating the corresponding strings in order for the two lists. That is,  $w_2w_1w_1w_3 = x_2x_1x_1x_3 = 1011111110$ . Thus, in this case PCP has a solution.

# **Text Book**

Introduction to Automata Theory, Languages and Computation, John E Hopcroft, Rajeev Motwani, Jeffery D. Ullman, Pearson Education, Third Edition, 2006