Code: AE15

Subject: COMMUNICATION ENGINEE

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks:

 (2×10)

ROLL NO.

studentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

Recovering information from a carrier is known as a.

(A) demultiplexing	(B) modulation
(C) demodulation	(\mathbf{D}) carrier recovery

b. Single sideband system require

(A) more band width	(B) high power
(C) more modulation index	(D) Complex Receiver Circuit

c. In a DM system, the granular noise occurs when the modulating signal

(A) increases rapidly	(B) remains constant
(C) decreases rapidly	(D) the nature of modulating signal has no
	effect on noise

d. A zero source generates two messages with prob 0.8 and 0.2 These are coded as 1 and 0. The code efficiency is

(A) 0.2	(B) 0.5
(C) 0.7	(D) 1.0

e. 13 dBm is equivalent to

AE15

(A) 2 mW	(B) 20 W
(C) 20 mW	(D) 2 W

f. For uniform quantization with 32 levels, the quantized output can be represented by a binary digits where n is

(A) 5	(B) 8
(C) 6	(D) 4

g. In forward error correction, if the data unit is 111111 and the divisor is 1010, them the dividend at the transmitter is

(A) 1111111000	(B) 111111010
(C) 111111	(D) 1111110000
5 / JUNE - 2012	1 AMIETE - ET (OLD SCHEME)

		ROLL NO.	
Coc	de: AE15 Subject:	COMMUNICATION ENGINED	CHER
h.	Hamming code has a capability of		°94
	(A) Error detection(C) Error detection and correction	(B) Error correction(D) Error encapsulation	rentBounty.com
i.	The probability density function of	f the envelope of narrowband noise is	~
	(A) Poisson(C) Rayleigh	(B) Gaussian(D) Rician	
j.	The Ring Modulator is used for the	e generation of	-
	(A) SSB-SC signal(C) FM signal	(B) DSB-SC signal(D) AM signal	
	Answer any FIVE Questio Each question o	ns out of EIGHT Questions. carries 16 marks.	
Q 2.	a. Differentiate between analog ar	nd digital signals.	(4)
	b. Draw and explain block diagram	n of a communication system.	(6)

	c. Find the mathematical representation of narrow band no	bise. (6)
Q 3.	a. Explain the different types of internal noise in brief.	(8	5)
	b. Derive the expression for Noise in a two stage cascaded	amplifier. (8	5)
Q 4.	a. Define modulation index with respect to amplitude more power relation and efficiency in A.M. modulated wave.	dulation. Derive the (10))
	b. Drive the mathematic expression for double sideband (DSB-SC)	suppressed carrier. (6	6)
Q5.	a. What will happen if a PM signal is received by an FM versa? Also describe the narrowband frequency modulat		5)
	 b. If a sinusoidal message signal is modulated with modula then (i) Find the efficiency of AM signal. (ii) When 100% modulation is achieved. 	ation index of 0.4 and 0.5, (8	8)
Q6.	a. State and proof the sampling theorem for the low pass si	ignals. (8	i)
	b. Explain the principle of Adaptive delta modulation. How delta modulation?	w does it differ from (8	5)
Q7.	a. Describe the Hamming code, Hamming distance and En	tropy. (8	5)

AMIETE - ET (OLD SCHEME)

Code: AE15

Subject: COMMUNICATION ENGINER

ROLL NO.

studentBounty.com b. A DMS X has five symbols x_1, x_2, x_3, x_4 and x_5 with P $(x_1) = 0$. $P(x_2) = 0.19$, $P(x_3) = 0.16$, $P(x_4) = 0.15$ and $P(x_5) = 0.1$ Construct the Shannon-Fano code for X and calculate the efficiency of code. **Q8**. a. Describe the operation of a CW Doppler radar can we use a CW radar for range measurement? Discuss. (8) b. Explain the importance of Blanking and synchronizing pulse in T.V transmission. (8) Q9. Write short notes on Pulse Amplitude Modulation (PAM) (i) **Optimum Receiver** (ii) SNR of PCM (iii) Channel capacity of a Gaussian channel (iv) (4×4)

3