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 Q.2 a. If 



................XXXy , then prove that 

 Xlogy1

y

dX

dy
X

e

2


  

  

  Ans.  we have 



................XXXy =   yX   [

 
 

................XXX = y] 

 

   by taking og  of both sides, we get 

   og y = y og x 

   differentiating w.r.t.  x 

    
dx

dy
ogx

x

y

dx

dy

y

1
  

   
x

y
ogx

y

1

dx

dy









   

     
dx

dy
 =  

ogxy1

y2


  

   Hence Proved  

 

  b. Find the equation of the tangent to the curve 8y2x2   which is 

perpendicular to the line 01y2x  .    

 

 Ans.  The given curve is x
2
 + 2y = 8__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (i) 

 Differentiating w.r.t. ‘x’ we get 

 2x + 2 
dx

dy
 = 0   

dx

dy
 = - x 

 and the given line is x – 2y +1 = 0 

 Differentiating w.r.t. ‘x’ we get 

 1 – 2 
dx

dy
 = 0   

dx

dy
 = 

2

1
 

 Since the tangent is perpendicular to the line therefore, (slope of tangent) 

(slope of line) = -1 

    (-x) 








2

1
 = -1   x = 2 

 Now, we have to find y co-ordinate when x = 2 on putting x = 2 in (i), we 

get 

 (2)
2
 + 2y = 8   2y = 8-4 = 4   y = 2 

 Equation of tangent to (i) at the point (2, 2) is, 

    y – 2 = -2(x – 2) 

 y – 2 = - 2x + 4    

    2x + y = 6  
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 Q.3 a. Evaluate 
 xdxcos.e x

 

    

Ans.  Let I = 
 xdxcos.e x , then 

  I II 

 = xdxsin.exsine xx


   

   = xdxsin.exsine xx


   

  I    II 

 = dx)xcos)(e()xcos(exsine xxx  
  

 = xdxcosexcosexsine xxx


   

 or     I = xcosexsine xx   - I 

 or    2I = )xcosx(sine x   

 or    I =  )xcosx(sin
2

e x




 

  

 b. Evaluate 
  

2

1

2
dx

x1x

1
  

   

Ans.   Let 
 2x1x

1


 =

2x1

CBx

x

A




 , then 

   1 = A (1 + x
2
) + (B x + C) x ___________ (i) 

   Putting x = 0 is (i), we get A = 1. Comparing the coefficients of x
2
 and x, 

we get, 

   0BA   and C = 0   B = -1 and C = 0  1A   

   
22 x1

x

x

1

)x1(x

1





  

   So,    dx
)x1(x

1
2

1

2 
 =  dx

x1

x2

2

1
dx

x

1
2

1

2

2

1

 
  

   =    2
1

22

1
)x1(og

2

1
ogx    

   =    2og5og
2

1
1og2og    

   =  2og
2

1
5og

2

1
2og    

   = 5og
2

1
2og

2

3
   
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 Q.4 a. Find the matrix A satisfying the equation 

























10

01

23

35
A

33

12
  

 

Ans.   Let B = 
33

12
 and C  = 

23

35
, then  

   0336
33

12
B   and 

   01910
23

35
C   

   So, B and C are invertible matrices. The given matrix equation is 

   BAC = I 

   on pre- multiplying by B
-1

 and post multiplying by C
-1

, we get,  

       B
-1

 (BAC) C
-1

 = B
-1

I C
-1 

    
   (B

-1
B) A (C C

-1
) = B

-1
.C

-1
 

     I A I = B
-1

.C
-1

 

     A = B
-1

. C
-1 

_________________ (i) 

   Matrix of co- factors of B = 












21

33
 

   Adjoint B = 












23

13
 

   B
-1

 = 
B

1
  Adj B = 













23

13

3

1
 ______________ (ii) 

   Matrix of co-factors of C = 












53

32
 

   Adjoint C = 












53

32
 

   C
-1

 = 
C

1
  Adj C =  













53

32
 ____________________ (iii) 

   on putting the value of B
-1

from (ii) and C
-1

 from (iii) in (i), we get 

     A = B
-1

.C
-1

 =  












23

13

3

1
   













53

32
 

                           =  












10966

5936

3

1
 = 













1912

149

3

1
 

    = 












3/194

3/143
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  b. Solve the following set of equations by using Cramer’s rule  

    2zyx,6zyx,9z3yx2   

  

Ans. Let  

111

111

312





  = -2 

      

112

116

319

x





  = -2 

      4

121

161

392

y   

      6

211

611

912

z 





  

 Now, x = 1
2

2x










 

         y = 2
2

4y










 

         z = 3
2

6





 

  x = 1, y = 2, z = 3 

 

 Q.5  a. Solve   0dxyxydyx2     

 

Ans.   The given equation is 0
x

)yx(y

dx

dy
2




  ___________ (i) 

 

   which is a homogeneous differential equation of first order, putting y = v x 

and 
dx

dy
 = v + x 

dx

dv
, equation (i) yields 

 

   v + x 
dx

dv
 + 0

x

)vxx(vx
2




 

   

   or    x 
dx

dv
+ v

2
 + 2v = 0   
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   or  0
x

dx

v2v

dv
2




  

 

   0
x

dx
dv

2v

1

v

1

2

1











  

   on integrating the required solution is  

 

   
2

1
   ogcogx)2v(ogogv    

      ogc
2v

v
xog  
















 

   or  ,c
2x/y

x/y
x 


 as v = 

x

y
 

   or   c
x2y

y
x 


  

 

   x
2
y = a(y + 2x) where c

2
 = a 

 

 

  b. Solve   ydytanxdydxy1 12   

  

 

 Ans.  (1+y
2
)dx  = (tan

-1
y – x) dy 

 

         xytan
dy

dx
y1 12    

       
22

1

y1

x

y1

ytan

dy

dx









 

     
2

1

2 y1

ytan

y1

x

dy

dx









 

        I. F.


  2y1

dx1

e  

                   = 
ytan 1

e


 

    

  So solution of the given differential equation is,  
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   = x
ytan 1

e


=   



2

1

y1

ytan cdy.e. ytan 1




 

 

    x 
ytan 1

e


 = c
y1

dy.e.ytan
2

ytan1 1






 

  Put tan
-1

y = t 

 

    dtdy
y1

1
2




 

     x 
ytan 1

e


= cdttet   

    x 
ytan 1

e


= t e
t
 – cdte t    

     x
ytan 1

e


= t e
t
 – e

t
 + c 

    x 
ytan 1

e


= e
t 
(t - 1) + c 

    x 
ytan 1

e


= 
ytan 1

e


(tan
-1

y + 1) + c 

   

    (tan
-1

y - 1) + c 
ytan 1

e


= x 

 

 Q.6 a. Prove that the coefficient of rx  in the expansion of   2
1

x41



  is 
 

 2!r

! r2
 

  

Ans.   We know that the general term of the expansion  

 

   (1 + x)
n
 is Tr+1 = 

!r

x).r1n......().........2n)(1n(n r
 

 

   Putting n = -
2

1
 and – 4x for x, we get 

 

   Tr+1 = 
!r

2

1r2
.......

2

5

2

3

2

1















 





























  (-1)
r
. (2

2
)
r
. x

r
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   = rr2

r

rr x.2.
!r2

)1r2......(7.5.3.1
)1()1(




  

 

 = rr x.2
!r

)1r2.......(7.5.3.1 
 

 Multiplying and dividing by 2.4.6...2r, we have  

 

 = 
 

rr
r2

x.2
!rr2...8.6.4.2

)1r2.......(4.3.2.1 
 =  rr

r
x.2

!r)r..3.2.1(2

!r2
 

 

 = rx
!r!r

!r2
 = r

2
x

)!r(

!r2
 

  Hence, the coefficient of x
r
 is 

2)!r(

!r2
 Proved 

 

  b. Find three number in A.P. whose sum is 21 and their product is 315.  

 

Ans.   Let three numbers is A.P. be, 

   a – d,  a,  a + d ___________ (i) 

 

          Their sum a – d + a +a+ d = 21 

   3a = 21   a = 7 

  Now product of 3 numbers = (a – d) a (a + d) 

 (a – d) . a (a + d) = 315 

  Putting the value of a, we get 

 (7-d) 7 (7 + d) = 315 

   (49 – d
2
) = 

7

315
= 45 

   d
2
 = 49-45 = 4 

   d =   2 

 

 Case I-   When a = 7, d = 2 putting in (i) 

 

 Numbers are 7-2, 7, 7+2 i.e. 5, 7, 9 

  

 Case II   When a = 7, d = -2 putting in (i) 

 

   Numbers 7+2, 7, 7-2 is 9, 7, 5 

    Required three numbers are 5, 7, 9, or 9, 7, 5 
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Q.7     a.  If A, B, C are the angles of a triangle, then prove that, tan 2A+ tan    

     2B + tan2C = tan 2A.tan 2B.tan 2C    

 

  Given that  A + B + C =   = 180
o
 

  then 2 A + 2B + 2C = 360
o
 

  or 2A + 2B = 360
o
-2C 

  Taking tangent of both sides 

  tan (2A + 2B) = tan (360
o
-2C) 

  
B2tan.A2tan1

B2tanA2tan




 = - tan2C 

  Cross-multiplying 

   tan2A + tan2B = -tan2C + tan2A.tan2B.tan2C 

  Transpasing, 

  tan2A + tan2B + tan2C = tan2A.tan2B.tan2C 

  Hence Proved.   

   
 

  b.  Prove that, 
16

3
70sin.60sin.50sin.10sin     

Ans.   We have, 

   LHS =  70sin.2/3.50sin.10sin  

   =
2

3
.

2

1   ooo 70sin.10sin.50sin2  

   =
4

3   ooooo 70sin.)1050cos()1050cos(   

   =
2

1

4

3  oooo 60cos70sin240cos.70sin2   

   =
8

3










2

1
70sin2)4070sin()4070sin( ooooo  

   = 
8

3  ooo 70sin30sin110sin   

 =
8

3








 ooo 70sin

2

1
)70180sin(  

 =
8

3








 oo 70sin

2

1
70sin  

 

  = 
8

3
×

2

1
= 

16

3
= RHS 

  Hence Proved 
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 Q.8   a. Find the equation of the straight lines through the point  1,2   and 

making an angle of 45  with the line 6x+5y-1 = 0.  

 

Ans.   Equation of the straight line through  1,2   and having slope m is 

   y + 1 = m(x + 2) ______________(i) 

 

(i) Makes an angle 45
o
 with the line 

6x + 5y – 1 = 0 ____________(ii) 

 Slope of (ii) in - 
5

6
 

 

tan45
o
 =   

5

m6
1

5

6
m





     or     1 = 
m65

6m5




 

 

taking + ve sign, 

 

5-6m = + (5m+6)   m = -
11

1
 

Taking -ve sign, 

 

5-6m = - (5m + 6)   m = 11 

 

Putting the values of m in (i) we get y + 1 = - 
11

1
(x – 2) and  

y + 1 = 11 (x – 2) 

 

or   x +11y + 9 = 0 and 11x – y -23 = 0 are the required eqn. of the & line. 

 

Ans.  x + 11y + 9 & 11x – y -23 = 0  

    

 

  b. Find the equation of lines parallel to 05y4x3   at a unit distance 

from it. 

    

Ans.   Equation of any line parallel to 3x – 4y -5 = 0 is 3x – 4y + k = 0 

   Put x = 0 in 3x – 4y – 5 = 0, we get y = 
4

5
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   Therefore, 






 

4

5
,0  is a point on the line 3x–4y-5 = 0 since the distance 

between the two lines is one unit therefore, the length of the perpendicular 

from 






 

4

5
,0 to 3x -4y + k = 0 is 1. 

   Hence 1
)4(3

k
4

5
403

22









 

   1
5

k5



   5 + k = 5 and 5 + k = -5 

     k = 0 and k = -10 

   Putting the value of k = 0 and k = -10 in (i) 

   3x – 4y = 0 and 3x – 4y -10 = 0 are the required equation of the straight 

lines. 

                3x - 4y = 0 

   Ans     3x – 4y – 10 = 0 

 

 

 Q.9   a. Find the equation of the circle which passes through the points 

   0,2,2,3   and having its centre on the line 03yx2   

  

 

Ans.   Let the equation of the circle be  

 

   x
2
 + y

2
+2gx + 2fy + c = 0 ________________(i) 

 

   as (i) passes through (3, -2) 

 

    9 + 4 + 6g - 4f + c = 0 

   or 13 + 6g – 4f + c = 0 

   or 6g – 4f + c = - 13____________(ii) 

    

   also (i) passes through ( -2, 0) 

  

    4 + 0 – 4g – 0 + c = 0 

   or 4g – c = 4 ____________________(iii) 

    

   the centre ( -g, -f) of (i) lies on 2x – y = 3 

   -2g + f = 3 _________________ (iv) 

 

   adding (ii) and (iii), we get 
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   10g – 4f = -9 ________________ (v) 

 

   Solving (iv) and (v), we get,    

    g = 
2

3
, f = 6 

 

   Putting g in (iii), we get, C = 2 

 

   Substituting these values of g, f and c in (i) we get,  

 

   x
2
 + y

2
 + 3x + 12y + 2 = 0 

 

   which is the required equation of circle.  

 

   x
2
 + y

2
 + 3x + 12y + 2 = 0 

  

    

 

  b. Find the vertex, focus directrix, latus-rectum and axis of parabola 

0y8x12x3 2     

 

 

 Ans.  The given equation is 0y8x12x3 2   

    

   0)y
3

8
x4x(3 2   

   or  0y
3

8
44x4x 2   

   or  (x + 2)
2
 = 

3

8
y + 4 

   or (x + 2)
2
 = 

3

8
 (y + )

2

3
 _________________ (i) 

    

   Put x + 2 = X and y + 
2

3
 = Y (shifting the on origin) 

    

    (i) reduces to X
2
 = 

3

8
Y or  X

2
 = 4 (

3

2
) Y 
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Comparing with standard equation we get the following table: 

    

Equation 
X

2
 = 

3

8
Y = 4(

3

2
Y ) (x + 2)

2
 = 

3

8
(y + )

2

3
 

Vertex (0, 0)   X = 0, Y = 0 










2

3
,2 [As X = x + 2 x = -2 

                Y = y +
2

3
   y = -

2

3
] 

Focus 
(0, 

3

2
) X=0, Y = 

3

2
 (-2, 

6

5
) [As X = x + 2 x =  -2 

                 Y= y +
2

3
=

3

2
y = - 

6

5
] 

Directrix 
Y + 

3

2
= 0 Y + 

6

13
 = 0 [As y + 

2

3
 + 

3

2
= 0  

                    y + 0
6

13
  

L.R. 

3

8
 

3

8
 

Axis X = 0 x + 2 = 0 
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