Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELEC

AMIETE - ET/CS/IT

Time: 3 Hours

DECEMBER 2012

LECONBOLUNT

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1	Choose the	correct of	r the b	est alterna	ative in	the foll	lowing:
V.1	CHOOSE HIE	COLLECT	i uic o	cot antenn	uu v C 111		10 11 1116

 (2×10)

- a. In an ideal Op-Amp open-loop voltage gain is
 - (A) Zero

(B) Infinite

(C) Larger

- (**D**) Medium
- b. Military grade op-amp temperature range is
 - (A) 0° C to 70° C

(B) -55° C to 125° C

(C) 0° C to 27° C

- **(D)** -27° C to $+40^{\circ}$ C
- c. The main purpose of the difference amplifier in op-amp is
 - (A) Better CMRR

- (B) Better gain
- **(C)** Noise cancellation
- (**D**) All of these
- d. The current to voltage converters are called as
 - (A) Transconductance Amplifier
- (B) Transresistance Amplifier
- (C) Transadmittance Amplifier
- (**D**) Converters
- e. Calculate phase-shift oscillator oscillating frequency if R=6.49 K Ω and C=0.1 $\mu\,\mathrm{F}$
 - **(A)** 110 Hz

(B) 100 Hz

(C) 10 Hz

- **(D)** 0.1 Hz
- f. The 555 timer can be used with supply voltage range of
 - $(A) \pm 5 V$

(B) +5 V to +18 V

(C) $\pm 18 \text{ V}$

(D) -5 V to -18 V

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELEC

- g. Which one of the following is a digital quantity?
 - (A) Current-flowing out of an electric outlet
 - **(B)** Ten-position switch
 - (C) Temperature of a room
 - **(D)** Automobile speedometer
- h. How many bits are needed to represent decimal values ranging 0 to 12,500?
 - **(A)** 16

(B) 14

(C) 10

- **(D)** 8
- i. Simplified expression of $y = A \overline{B} D + A \overline{B} \overline{D}$ is
 - **(A)** 1

(B) AB

(C) $A\overline{B}$

- $(\mathbf{D}) \ \overline{\mathbf{B}} \ \mathbf{D}$
- j. Simplified expression of $z = \overline{(\overline{A} + C).(B + \overline{D})}$ is
 - **(A)** 1

(B) $AB + \overline{B}D$

(C) $A\overline{C} + \overline{B}D$

(D) $AC + \overline{B}D$

PART (A)

Answer At least TWO questions. Each question carries 16 marks.

Q.2 a. List the advantages of integrated circuits over discrete component circuit. (6)

Fig. 1

- b. In Fig.1, given $R_1=10\,k\Omega$, $R_f=100\,k\Omega$, $V_i=1\,V$, a load of 25 $k\Omega$ is connected to the output terminal. Calculate
 - (i) i_1

(ii) v_0

(iii) i_L and i_o

- **(6)**
- c. Draw an AC equivalent circuit of Fig. 2 using hybrid- Π model.
- **(4)**

SHIIDENT BOUNTY COM Subject: LINEAR ICs & DIGITAL ELEC **Code: AE54/AC54/AT54**

- **Q.3** a. For the non-inverting amplifier of Fig. 3, $R_1 = 1 \, k\Omega$ and $R_f = 10 \, k\Omega$. Calculate the following:
 - (i) The maximum output offset voltage due to V_{OS} and I_B. The opamp is LM307 with $V_{OS}=10$ mV and $I_{B}=300$ nA and $I_{OS}=50$ nA.
 - (ii) The value of R_{comp} needed to reduce the effect of I_B .
 - (iii) The maximum output-offset voltage if R_{comp} as calculated in (ii) is connected in the circuit. **(8)**

Fig. 3

- b. With the needful diagram show the difference between V to I and I to V converter. **(8)**
- **Q.4** a. Draw the positive peak-detector circuit and explain its working operation. (8)
 - b. In Fig.4, show that $V_o = \frac{1}{RC} \int V_i . dt$. **(8)**

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELEC

- Q.5 a. Explain the working of Successive Approximation Analog to Digital Converter.
 - b. Explain Astable-multivibrator circuit operation using 555 timers. (8)

PART (B) Answer At least TWO questions. Each question carries 16 marks.

- Q.6 a. What are the advantages of digital techniques over analog? (6)
 - b. A small process control uses octal codes to represent it's 12-bit memory addresses.
 - (i) How many octal digits are required?
 - (ii) What is the range of addresses in octal?
 - (iii) How many memory locations are there?
- (4)

- c. Convert the following:
 - (i) 0 1 1 1 1 1 0 0 0 0 0 1 (BCD) to decimal
 - (ii) B2F₁₆ to octal
 - (iii) 378_{10} to hexa.

(6)

Q.7 a. Determine the output in Fig.5, for the condition A=0, B=1, C=1 and D=1. (4)

Fig. 5

- b. Implement INVERTER, AND and OR gates using NAND and NOR-gates. (8)
- c. Simplify the expression $X = (\overline{A} + B)(A + B + D)\overline{D}$ (4)
- Q.8 a. Explain the design procedure of full adder. (8)
 - b. Write a short note on Demultiplexers. (8)
- Q.9 a. Draw and explain the NOR-gate latch working operation. (8)
 - b. Design four-bit ring counter using D flip-flops. (8)