Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours

JUNE 2011

Student Bounty.com Max. Marks: 100

 (2×10)

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: **Q.1**

a.
$$\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$$
 is:

(A)
$$-\frac{1}{2}$$

(B)
$$\frac{1}{2}$$

(D)
$$0$$

b. If
$$y = \log(\sec x + \tan x)$$
 then $\frac{dy}{dx}$ is

$$(A) - \sec x$$

$$(\mathbf{C}) - \tan x$$

c.
$$\int \frac{\sin 4x}{\sin x}$$
 is

(A)
$$2\left(\frac{\sin 3x}{3} + \sin x\right) + C$$

(B)
$$\frac{\sin 3x}{3} + \sin x + C$$

(C)
$$\frac{\sin 3x}{3} - \sin x + C$$

(C)
$$\frac{\sin 3x}{3} - \sin x + C$$
 (D) $2\left(\frac{\sin 3x}{3} - \sin x\right) + C$

d.
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, then $A^2 - 4A + 3I$ is

$$\mathbf{(A)} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$(B) \begin{bmatrix} 0 & -1 \\ 0 & 3 \end{bmatrix}$$

$$(\mathbf{C}) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$(D) \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

(D)
$$-a - b - c$$

Student Bounty.com f. The order and degree of differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2} = 5\frac{d^2y}{dx^2}$ is

(A) Order =
$$2$$
, Degree = 2

(B) Order = 1, Degree =
$$2$$

(C) Order =
$$2$$
, Degree = 1

(D) Order = 1, Degree =
$$1$$

g. The term independent of x in the expansion of
$$\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$$
 is

(A)
$$\frac{19}{18}$$

(B)
$$\frac{5}{18}$$

(C)
$$\frac{11}{18}$$

(D)
$$\frac{7}{18}$$

h. The value of $\csc 2\theta + \cot 2\theta$ is

(A)
$$\cot 3\theta$$

(B)
$$\tan \theta$$

(C)
$$\cot \theta$$

(D)
$$\tan 2\theta$$

i. The equation of the straight line which makes an angle of 45° with x – axis and cuts of an intercept 3 on y – axis above origin

(A)
$$x - y + 3 = 0$$

(B)
$$x + y + 3 = 0$$

(C)
$$2x + y - 3 = 0$$

(D)
$$x - 2y + 3 = 0$$

j. The centroid of the triangle with vertices (2,7), (3,4) and (-6,4) is

$$(\mathbf{A})\left(\frac{2}{3},5\right)$$

(B)
$$\left(\frac{1}{3},5\right)$$

(C)
$$\left(-\frac{2}{3},5\right)$$

(D)
$$\left(-\frac{1}{3},5\right)$$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a. Show that, $\cos 20^{\circ} \cos 30^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{\sqrt{3}}{16}$ **Q.2 (8)**

b. In a triangle ABC, if $\sin 2A + \sin 2B = \sin 2C$, prove that either $A = 90^{\circ}$ or $B = 90^{\circ}$. (8)

Q.3 a. Find the middle terms in the expansion of $\left(3x - \frac{x^3}{6}\right)^7$.

b. The fourth, seventh and the last term of a G.P. are 10, 80 and 2560 respectively. Find the first term and the number of terms in G.P. (8)

Q.4 a. Show that
$$\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3.$$
 (8)

- b. Using matrix method, solve the following system of equation and also check whether the system is consistent or inconsistent x + y + z = 6; 2x y + z = 3; x 2y + 3z = 6 (8)
- Q.5 a. A line passes through (3, 4) and the sum of its intercepts on the axis is 14, find the equation of the line. (8)
 - b. If p is the length of the perpendicular from the origins to the line $\frac{x}{a} + \frac{y}{b} = 1$, then prove that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$. (8)
- Q.6 a. Find the equation of the circle which passes through the points (1,1) & (2,2) and whose radius is 1.(8)
 - b. Find the equation of the ellipse having axis along coordinate axis, passing through (4, 3) & (-1, 4). (8)
- Q.7 a. If $y = \sin(m\sin^{-1} x)$, prove that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} + m^2 y = 0$ (8)
 - b. Show that $\frac{\log x}{x}$ has a maximum value at x = e. (8)
- **Q.8** a. Evaluate $\int \csc^3 x dx$. (8)
 - b. Evaluate $\int_{0}^{\pi/2} \frac{1}{3\sin^2 x + 4\cos^2 x} dx$ (8)
- **Q.9** a. Solve the initial value problem: π

$$\sin x \cos y dx + \cos x \sin y dy = 0, y(0) = \frac{\pi}{4}$$
 (8)

b. Solve $\frac{dy}{dx} = \frac{y + x - 2}{y - x - 4}$. (8)