Diplete - CS (OLD SCHEME)

Student Bounty.com Subject: FUNDAMENTALS OF ELECTRONIC Code: DC02 Time: 3 Hours Max. Marks: 100

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:			$(2\times10$	
	a. The input impedance of an ideal op-amp is				
		(A) Zero.	(B) Infinity.		
		(C) 100Ω .	(D) Less than one.		
	b. A resistor has a colour band sequence Green, Violet, Black and gold value is				
		(A) $5.7 \Omega \pm 5\%$.	(B) 57 $\Omega \pm 5\%$.		
		(C) 570 $\Omega \pm 5\%$.	(D) 5.7 K $\Omega \pm 5\%$.		
	c. Oscillators uses feedback.				
		(A) Positive.	(B) Negative.		
		(C) Both (A) and (B).	(D) None of above.		
	d.	d. An electron in the conduction band			
		(A) has no energy.			
			an electron in the valance band. an electron in the valance band.		
			n an electron in the valance band.		
	e.	e. When the P-N junction is forward biased, width of depletion layer			
		(A) reduced.	(B) increased.		
		(C) same as unbiased.	(D) none of above.		
	f.	The Schottky barrier diode h	nas		
		(A) one p-n junction.	(B) two p-n junction.		
		(C) no p-n junction.	(D) none of them is true.		
רטט) / IIINF _ 2011 1		1 DIDIFTE - CC (OI D SCHEME	=/	

			region is made narrower than the other two (B) base region. (D) none of above. ersal gate			
	g.	In a junction transistor, which region is made narrower than the other two regions				
		(A) collector region.(C) emitter region.	(B) base region.(D) none of above.			
	h.	Which of the following is a universal gate				
		(A) AND (C) OR	(B) NAND (D) NOT			
	i.	The main advantage of CMOS is				
		(A) high speed.(C) low power consumption.	(B) low noise margins.(D) none of above.			
	j	The plastic DIP IC package is most widely used, because				
		 (A) it has higher mechanical strength. (B) it is only packing method available. (C) other type of packing method is not reliable. (D) it is much cheaper than other type of packages. 				
		Answer any FIVE Question Each question ca				
Q.2	a.	Explain the working of electrolytic capacitor with the help of its constructional details. (8)				
	b.	Explain how will you convert a state and explain Thevenin's the	current source into a voltage source. Also orem. (4+4)			
Q.3	a.	What are intrinsic and extrintemperature on conductivity of s	nsic semiconductors? Explain effect of emiconductor. (4+4)			
	b.	What is p-n junction diode? If junction diode? What is its signi	How potential barrier is formed in a p-n ficance? (3+3+2)			
Q.4	a.	Draw the V-I characteristics of principle.	of Tunnel diode and explain its working (8)			
	b.	Explain the term doping and i	its need. Draw energy band diagram for			

Q.5 a. Explain the transistor action with the help of suitable diagram and also explain need for transistor biasing. (4+4)

the donor and the acceptor levels.

N-type and P-type semiconductors and indicate the position of the Fermi,

(4+4)

- b. Compare the CB, CE and CC configurations of a transistor. Draw and output characteristics of a transistor in CB configuration.
- Student Bounts Com **Q.6** a. Explain the differences between positive and negative feedback amplifier. What are advantages & disadvantages of negative feedback amplifier?
 - b. With the help of a diagram, explain the working of FET as a switch. Also list out the applications of FET.
- **Q.7** a. Prove the following using Boolean algebra
 - (i) A(A+B) + A(B+C) + A(A+C) = A

(ii)
$$(A+B)(\overline{A}+C)(B+C) = AC+B\overline{A}$$
 (4+4)

b. Minimize the following logic functions using K- Map

$$f(A, B, C, D) = \sum m(1,3,5,8,9,11,15) + d(2,13)$$
 (8)

- **Q.8** a. Draw schematic diagram of TTL NAND gate and explain its working. **(8)**
 - b. Draw symbol of EX-OR gate and explain its working using truth table. Also realize EX-OR gate using four NAND gates only. (4+4)
- **Q.9** a. What is IC? Explain how a capacitor can be constructed in a monolithic IC.(8)
 - b. Draw the schematic diagram of Integrator and Voltage Follower using op-amp and explain its working. (4+4)