Diplete - ET/CS (NEW SCHEME) Code: DE55 / DC53

Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Ouestion 1 is compulsory and carries 20 marks. Answer to O.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. The value of the limit $\lim_{x \to 0} \left(\frac{2^x 1}{(1 + x)^{1/2} 1} \right)$ is equal to
 - (A) 2 log2

(B) log2

 (\mathbf{C}) 0

- **(D)** 1
- b. The value of definite integral $\int \theta \sin^3 \theta \cos \theta d\theta$ is equal to

(C) $\frac{\pi}{32}$

- c. The solution of $xdy ydx = \sqrt{x^2 + y^2} dx$ is
 - (A) $y \sqrt{x^2 + y^2} = cx^2$
- **(B)** $x y^2 e^{-y} = cy^2$
- (C) $v + \sqrt{x^2 + v^2} = cx^2$
- (**D**) None of these.
- d. z is a complex number with |z| = 1, $arg(z) = 3\pi/4$ the value of z is
 - **(A)** $(1+i)/\sqrt{2}$

(B) $(-1+i)/\sqrt{2}$

(C) $(1-i)/\sqrt{2}$

(D) $(-1-i)/\sqrt{2}$

(A) 48

(B) 45

(C) 40

(D) 44

f. Laplace transform of $te^{at} \sin(at)$, t > 0 is

(A) $\frac{(s-a)}{(s-a)^2 + a^2}$

- **(B)** $\frac{a(s-a)}{(s-a)^2 + a^2}$
- (C) $\frac{2a(s-a)}{\left\lceil (s-a)^2 + a^2 \right\rceil^2}$
- **(D)** $\frac{(s-a)^2}{(s-a)^2+a^2}$

g.
$$L^{-1}\left(\tan^{-1}\frac{1}{s}\right)$$
 is

(A) $\frac{\cos t}{t}$

(B) $\frac{\sin t}{t}$

(C) $1 + \cos t$

(D) $1 - \cos t$

h. If $f(x) = \cos x$, $(-\pi, \pi)$ then the value of b_n is

 $(A) -\pi$

(B) 0

(C) π

(D) 2π

i. The volume of the parallelopiped whose three coterminus edges are given by $\overline{a} = -\hat{i} + \hat{j} + 3\hat{k}$, $\overline{b} = -\hat{i} + 2\hat{j} - 3\hat{k}$, $\overline{c} = \hat{i} - 2\hat{j} - \hat{k}$ is

(A) 2

(B) 4

(C) - 2

(D) -4

j. If the admittance and current of a circuit are given by the complex numbers 7+i, 1-i respectively, then the voltage of the circuit is

(A) $\frac{4}{25} + i \frac{4}{25}$

(B) $-\frac{4}{25} - i\frac{4}{25}$

(C) $\frac{4}{25} - i \frac{4}{25}$

(D) $-\frac{4}{25} + i\frac{4}{25}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

Q.2 a. Evaluate
$$\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$$

b. If $f(x)$ is twice differentiable such that $f''(x) = -f(x)$ and $f'(x) = g(x)$,

- b. If f(x) is twice differentiable such that f''(x) = -f(x) and f'(x) = g(x), $h(x) = [f(x)]^2 + [g(x)]^2$, then find the value of h(10) if h(5) = 11.
- a. Find the volume of the solid generated by the revolution of the area of the **Q.3** ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ about x-axis. (8)
 - b. If $U_n = \int_0^{n/2} x \left(\sin^n x\right) dx (n > 1)$ then prove that $U_n = \frac{n-1}{n} U_{n-2} + \frac{1}{n^2}$. Deduce that $U_5 = \frac{149}{225}$ **(8)**
- a. Separate $tan^{-1}(a+ib)$ into real and imaginary parts. **(8) Q.4**
 - b. If n is a positive integer, prove that $(\sqrt{3} + i)^n + (\sqrt{3} i)^n = 2^{n+1}$ **(8)**
- a. Find the moment about a line through the origin having direction of 0.5 $2\hat{i} + 2\hat{j} + \hat{k}$ due to a 30kg force acting at a point (-4,2,5) in the direction of $12\hat{i} - 4\hat{j} - 3\hat{k}$. **(8)**

b. If
$$|\vec{A} + \vec{B}| = 60$$
, $|\vec{A} - \vec{B}| = 40$, $|\vec{B}| = 46$, find $|\vec{A}|$ (8)

Q.6 a. Solve
$$\frac{d^2x}{dt^2} + 9x = \cos 2t$$
, if $x(0) = 1, x(\pi/2) = -1$ (8)

b. Solve
$$x \sin x \frac{dy}{dx} + (x \cos x + \sin x) y = \sin x$$
 (8)

a. Find the Fourier series of the function $f(x) = \begin{cases} 0, & -2 < x < -1 \\ 1+x, & -1 < x < 0 \\ 1-x, & 0 < x < 1 \end{cases}$ **(8)** b. Given that $f(x) = x + x^2$ for $-\pi < x < \pi$ find the Fourier expansion of f(x).

Given that
$$f(x) = x + x^2$$
 for $-\pi < x < \pi$ find the Fourier expansion of $f(x)$.

Deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (8)

Q.8 a. Find the Laplace transform of
$$\frac{1-\cos t}{t^2}$$
 (8)

b. Find the Laplace transform of the function $f(t) = \begin{cases} \sin wt & \text{for } 0 < t < \frac{\pi}{w} \\ 0 & \text{for } \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ (8)

Q.9 a. Evaluate
$$L^{-1}\left(\frac{s}{\left(s^2+a^2\right)^2}\right)$$
 (8)

b. Find $L^{-1} \left[\frac{3s-8}{s^2-4s+20} \right]$ **(8)**