IIT-JEE2005-M-1

FIITJEE Solutions to IITJEE–2005 Mains Paper **Mathematics**

Time: 2 hours

by a car.

- *Note:* Question number 1 to 8 carries 2 *marks* each, 9 to 16 carries 4 *marks* each and 17 to 18 carries 6 *marks* each.
- **Q1.** A person goes to office either by car, scooter, bus or train probability of which being $\frac{1}{7}$, $\frac{3}{7}$, $\frac{2}{7}$ and $\frac{1}{7}$ respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is $\frac{2}{9}$, $\frac{1}{9}$, $\frac{4}{9}$ and $\frac{1}{9}$ respectively. Given that he reached office in time, then what is the probability that he travelled

Sol. Let C, S, B, T be the events of the person going by car, scooter, bus or train respectively. Given that $P(C) = \frac{1}{7}$, $P(S) = \frac{3}{7}$, $P(B) = \frac{2}{7}$, $P(T) = \frac{1}{7}$

Let \overline{L} be the event of the person reaching the office in time.

$$\Rightarrow P\left(\frac{\overline{L}}{\overline{C}}\right) = \frac{7}{9}, \ P\left(\frac{\overline{L}}{\overline{S}}\right) = \frac{8}{9}, \ P\left(\frac{\overline{L}}{\overline{B}}\right) = \frac{5}{9}, \ P\left(\frac{\overline{L}}{\overline{T}}\right) = \frac{8}{9}$$
$$\Rightarrow P\left(\frac{\overline{C}}{\overline{L}}\right) = \frac{P\left(\frac{\overline{L}}{\overline{C}}\right) \cdot P(C)}{P(\overline{L})} = \frac{\frac{1}{7} \times \frac{7}{9}}{\frac{1}{7} \times \frac{7}{9} + \frac{3}{7} \times \frac{8}{9} + \frac{2}{7} \times \frac{5}{9} + \frac{8}{9} \times \frac{1}{7}} = \frac{1}{7}$$

- **Q2.** Find the range of values of t for which 2 sin t = $\frac{1-2x+5x^2}{3x^2-2x-1}$, t $\in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- Sol. Let $y = 2 \sin t$ so, $y = \frac{1-2x+5x^2}{3x^2-2x-1}$ $\Rightarrow (3y-5)x^2-2x(y-1)-(y+1)=0$ since $x \in \mathbb{R} - \left\{1, -\frac{1}{3}\right\}$, so $D \ge 0$ $\Rightarrow y^2 - y - 1 \ge 0$ or $y \ge \frac{1+\sqrt{5}}{2}$ and $y \le \frac{1-\sqrt{5}}{2}$ or sin $t \ge \frac{1+\sqrt{5}}{4}$ and sin $t \le \frac{1-\sqrt{5}}{4}$ Hence range of t is $\left[-\frac{\pi}{2}, -\frac{\pi}{10}\right] \cup \left[\frac{3\pi}{10}, \frac{\pi}{2}\right]$.
- **Q3.** Circles with radii 3, 4 and 5 touch each other externally if P is the point of intersection of tangents to these circles at their points of contact. Find the distance of P from the points of contact.

IIT-JEE2005-M-2

Sol. Let A, B, C be the centre of the three circles. Clearly the point P is the in–centre of the $\triangle ABC$, and hence

$$r = \frac{\Delta}{s} = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s} = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$

Now 2s = 7 + 8 + 9 = 24 \Rightarrow s = 12.
Hence $r = \sqrt{\frac{5.4.3}{12}} = \sqrt{5}$.

- **Q4.** Find the equation of the plane containing the line 2x y + z 3 = 0, 3x + y + z = 5 and at a distance of $\frac{1}{\sqrt{6}}$ from the point (2, 1, -1).
- **Sol.** Let the equation of plane be $(3\lambda + 2)x + (\lambda 1)y + (\lambda + 1)z 5\lambda 3 = 0$

$$\Rightarrow \left| \frac{6\lambda + 4 + \lambda - 1 - \lambda - 1 - 5\lambda - 3}{\sqrt{(3\lambda + 2)^2 + (\lambda - 1)^2 + (\lambda + 1)^2}} \right| = \frac{1}{\sqrt{6}}$$
$$\Rightarrow 6(\lambda - 1)^2 = 11\lambda^2 + 12\lambda + 6 \Rightarrow \lambda = 0, -\frac{24}{5}.$$

- \Rightarrow The planes are 2x y + z 3 = 0 and 62x + 29y + 19z 105 = 0.
- **Q5.** If $|f(x_1) f(x_2)| < (x_1 x_2)^2$, for all $x_1, x_2 \in \mathbb{R}$. Find the equation of tangent to the curve y = f(x) at the point (1, 2).
- Sol. $|f(x_1) f(x_2)| < (x_1 x_2)^2$ $\Rightarrow \lim_{x_1 \to x_2} \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right| < \lim_{x_1 \to x_2} |x_1 - x_2| \Rightarrow |f'(x)| < \delta \Rightarrow f'(x) = 0.$ Hence f (x) is a constant function and P (1, 2) lies on the curve. $\Rightarrow f(x) = 2 \text{ is the curve.}$ Hence the equation of tangent is y - 2 = 0.
- **Q6.** If total number of runs scored in n matches is $\left(\frac{n+1}{4}\right)(2^{n+1} n 2)$ where n > 1, and the runs scored in the kth match are given by k. 2^{n+1-k} , where $1 \le k \le n$. Find n.
- **Sol.** Let $S_n = \sum_{k=1}^n k \cdot 2^{n+1-k} = 2^{n+1} \sum_{k=1}^n k \cdot 2^{-k} = 2^{n+1} \cdot 2 \left[1 \frac{1}{2^n} \frac{n}{2^{n+1}} \right]$ (sum of the A.G.P.) = $2[2^{n+1} - 2 - n]$ $\Rightarrow \frac{n+1}{4} = 2 \Rightarrow n = 7.$
- **Q7.** The area of the triangle formed by the intersection of a line parallel to x-axis and passing through P(h, k) with the lines y = x and x + y = 2 is $4h^2$. Find the locus of the point P.

FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942

IIT-JEE2005-M-3

Q8. Evaluate
$$\int_{0}^{\pi} e^{|\cos x|} \left(2\sin\left(\frac{1}{2}\cos x\right) + 3\cos\left(\frac{1}{2}\cos x\right) \right) \sin x \, dx.$$

Sol.
$$I = \int_{0}^{\pi} e^{|\cos x|} \left(2\sin\left(\frac{1}{2}\cos x\right) + 3\cos\left(\frac{1}{2}\cos x\right) \right) \sin x \, dx$$
$$= 6 \int_{0}^{\pi/2} e^{\cos x} \sin x \cos\left(\frac{1}{2}\cos x\right) dx \qquad \left(\because \int_{0}^{2a} f(x) \, dx = \begin{cases} 0, & \text{if } f(2a - x) = -f(x) \\ 2\int_{0}^{a} f(x) \, dx, & \text{if } f(2a - x) = f(x) \end{cases} \right)$$

Let $\cos x = t$

$$I = 6 \int_{0}^{1} e^{t} \cos\left(\frac{t}{2}\right) dt$$
$$= \frac{24}{5} \left(e \cos\left(\frac{1}{2}\right) + \frac{e}{2} \sin\left(\frac{1}{2}\right) - 1\right).$$

Q9. Incident ray is along the unit vector $\,\hat{v}\,$ and the reflected ray is along the unit vector ŵ. The normal is along unit vector â outwards. Express \hat{w} in terms of \hat{a} and \hat{v} .

- \hat{v} is unit vector along the incident ray and \hat{w} Sol. is the unit vector along the reflected ray. Hence â is a unit vector along the external **(90**bisector of \hat{v} and \hat{w} . Hence $\hat{\mathbf{w}} - \hat{\mathbf{v}} = \lambda \hat{\mathbf{a}}$ \Rightarrow 1 + 1 - $\hat{w} \cdot \hat{v} = \lambda^2$ or $2 - 2 \cos 2\theta = \lambda^2$ or $\lambda = 2 \sin \theta$ where 20 is the angle between \hat{v} and \hat{w} . Hence $\hat{w} - \hat{v} = 2\sin\theta \hat{a} = 2\cos(90^{\circ} - \theta)\hat{a} = -(2\hat{a}\cdot\hat{v})\hat{a}$ $\Rightarrow \hat{w} = \hat{v} - 2(\hat{a} \cdot \hat{v})\hat{a}$.
- Tangents are drawn from any point on the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ to the circle $x^2 + y^2 = 9$. Find the Q10. locus of mid-point of the chord of contact.

â

 2θ

mirror

mmmm

Sol. Any point on the hyperbola
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$
 is $(3 \sec \theta, 2 \tan \theta)$.
Chord of contact of the circle $x^2 + y^2 = 9$ with respect to the point $(3 \sec \theta, 2 \tan \theta)$ is
 $3 \sec \theta. x + 2 \tan \theta. y = 9$ (1)
Let (x_1, y_1) be the mid-point of the chord of contact.
 \Rightarrow equation of chord in mid-point form is $xx_1 + yy_1 = x_1^2 + y_1^2$ (2)
Since (1) and (2) represent the same line,
 $\frac{3 \sec \theta}{x_1} = \frac{2 \tan \theta}{y_1} = \frac{9}{x_1^2 + y_1^2}$
 $\Rightarrow \sec \theta = \frac{9x_1}{3(x_1^2 + y_1^2)}, \ \tan \theta = \frac{9y_1}{2(x_1^2 + y_1^2)}$
Hence $\frac{81x_1^2}{9(x_1^2 + y_1^2)^2} - \frac{81y_1^2}{4(x_1^2 + y_1^2)^2} = 1$
 \Rightarrow the required locus is $\frac{x^2}{9} - \frac{y^2}{4} = \left(\frac{x^2 + y^2}{9}\right)^2$.

IIT-JEE2005-M-4

- **Q11.** Find the equation of the common tangent in 1st quadrant to the circle $x^2 + y^2 = 16$ and the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$. Also find the length of the intercept of the tangent between the coordinate axes.
- Sol. Let the equations of tangents to the given circle and the ellipse respectively be

$$y = mx + 4\sqrt{1 + m^{2}}$$

and $y = mx + \sqrt{25m^{2} + 4}$
Since both of these represent the same common tangent
 $4\sqrt{1 + m^{2}} = \sqrt{25m^{2} + 4}$
 $\Rightarrow 16(1 + m^{2}) = 25m^{2} + 4$
 $\Rightarrow m = \pm \frac{2}{\sqrt{3}}$

The tangent is at a point in the first quadrant \Rightarrow m < 0.

 $\Rightarrow m = -\frac{2}{\sqrt{3}}, \text{ so that the equation of the common tangent is}$ $y = -\frac{2}{\sqrt{3}}x + 4\sqrt{\frac{7}{3}}.$

It meets the coordinate axes at $A(2\sqrt{7}, 0)$ and $B(0, 4\sqrt{7})$

$$\Rightarrow AB = \frac{14}{\sqrt{3}}.$$

Q12. If length of tangent at any point on the curve y = f(x) intercepted between the point and the x-axis is of length 1. Find the equation of the curve.

Sol. Length of tangent =
$$\left| y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \right| \Rightarrow 1 = y^2 \left[1 + \left(\frac{dx}{dy}\right)^2 \right]$$

$$\Rightarrow \frac{dy}{dx} = \pm \frac{y}{\sqrt{1-y^2}} \Rightarrow \int \frac{\sqrt{1-y^2}}{y} dy = \pm x + c.$$

Writing $y = \sin \theta$, $dy = \cos \theta d\theta$ and integrating, we get the equation of the curve as

$$\sqrt{1-y^2} + \ln \left| \frac{1-\sqrt{1-y^2}}{y} \right| = \pm x + c$$
.

- **Q13.** Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x 3$.
- Sol. The region bounded by the given curves $x^2 = y, x^2 = -y$ and $y^2 = 4x - 3$ is symmetrical about the x-axis. The parabolas $x^2 = y$ and $y^2 = 4x - 3$ touch at the point (1, 1). Moreover the vertex of the curve $y^2 = 4x - 3$ is at $\left(\frac{3}{4}, 0\right)$.

Hence the area of the region

$$= 2\left[\int_{0}^{1} x^{2} dx - \int_{3/4}^{1} \sqrt{4x - 3} dx\right]$$
$$= 2\left[\left(\frac{x^{3}}{3}\right)_{0}^{1} - \frac{1}{6}\left(\left(4x - 3\right)^{3/2}\right)_{3/4}^{1}\right] = 2\left[\frac{1}{3} - \frac{1}{6}\right] = \frac{1}{3} \text{ sq. units.}$$

IIT-JEE2005-M-5

- **Q14.** If one of the vertices of the square circumscribing the circle $|z 1| = \sqrt{2}$ is $2 + \sqrt{3}$ i. Find the other vertices of square.
- **Sol**. Since centre of circle i.e. (1, 0) is also the mid–point of diagonals of square

$$\Rightarrow \frac{z_1 + z_2}{2} = z_0 \Rightarrow z_2 = -\sqrt{3}i$$

and $\frac{z_3 - 1}{z_1 - 1} = e^{\pm i\pi/2}$
$$\Rightarrow \text{ other vertices are}$$

 $z_3, z_4 = (1 - \sqrt{3}) + i \text{ and } (1 + \sqrt{3}) - i.$

- **Q15.** If f(x y) = f(x). g(y) f(y). g(x) and g(x y) = g(x). g(y) + f(x). f(y) for all $x, y \in \mathbb{R}$. If right hand derivative at x = 0 exists for f(x). Find derivative of g(x) at x = 0.
- Sol. f(x - y) = f(x) g(y) - f(y) g(x)... (1) Put x = y in (1), we get f(0) = 0put y = 0 in (1), we get g(0) = 1.Now, f' (0⁺) = $\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{f(0)g(-h) - g(0)f(-h) - f(0)}{h}$ h h→0 = lim $\frac{f(-h)}{}$ (:: f(0) = 0) $h \rightarrow 0^+$ $= \lim_{h \to 0^+} \frac{f(0-h) - f(0)}{-h}$ $h \rightarrow 0^+$ $= f'(0^{-}).$ Hence f (x) is differentiable at x = 0. Put y = x in g(x - y) = g(x). g(y) + f(x). f(y). Also $f^{2}(x) + g^{2}(x) = 1$ \Rightarrow g² (x) = 1 - f² (x) \Rightarrow 2g' (0) g (0) = - 2f (0) f' (0) = 0 \Rightarrow g' (0) = 0.
- **Q16.** If p(x) be a polynomial of degree 3 satisfying p(-1) = 10, p(1) = -6 and p(x) has maximum at x = -1 and p'(x) has minima at x = 1. Find the distance between the local maximum and local minimum of the curve.
- Sol. Let the polynomial be P (x) = $ax^3 + bx^2 + cx + d$ According to given conditions P (-1) = -a + b - c + d = 10P (1) = a + b + c + d = -6Also P' (-1) = 3a - 2b + c = 0and P'' (1) = $6a + 2b = 0 \Rightarrow 3a + b = 0$ Solving for a, b, c, d we get P (x) = $x^3 - 3x^2 - 9x + 5$ \Rightarrow P' (x) = $3x^2 - 6x - 9 = 3(x + 1)(x - 3)$ $\Rightarrow x = -1$ is the point of maximum and x = 3 is the point of minimum. Hence distance between (-1, 10) and (3, -22) is $4\sqrt{65}$ units.
- **Q17.** f(x) is a differentiable function and g (x) is a double differentiable function such that $|f(x)| \le 1$ and f'(x) = g(x). If $f^2(0) + g^2(0) = 9$. Prove that there exists some $c \in (-3, 3)$ such that g (c). g''(c) < 0.
- $\begin{array}{ll} \textbf{Sol.} & \text{Let us suppose that both g (x) and g'' (x) are positive for all $x \in (-3, 3)$.} \\ & \text{Since } f^2 \left(0 \right) + g^2 \left(0 \right) = 9 \text{ and } -1 \leq f \left(x \right) \leq 1, \ 2 \sqrt{2} \ \leq g \left(0 \right) \leq 3$.} \\ & \text{From } f' \left(x \right) = g \left(x \right), \text{ we get} \\ & f \left(x \right) = \int\limits_{-\infty}^{x} g(x) dx \ + f \left(-3 \right). \end{array}$

FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942

IIT-JEE2005-M-6

Moreover, g'' (x) is assumed to be positive \Rightarrow the curve y = g (x) is open upwards.

If g (x) is decreasing, then for some value of x $\int_{-3}^{x} g(x) dx > area of the rectangle (0 - (-3))2\sqrt{2}$

 \Rightarrow f (x) > 2 $\sqrt{2} \times 3 - 1$ i.e. f (x) > 1 which is a contradiction.

If g (x) is increasing, for some value of x $\int_{2}^{3} g(x) dx > area of the rectangle (3 - 0))2\sqrt{2}$

 \Rightarrow f (x) > 2 $\sqrt{2} \times 3 - 1$ i.e. f (x) > 1 which is a contradiction.

If g(x) is minimum at x = 0, then $\int_{-3}^{2} g(x) dx$ > area of the rectangle $(3 - 0)2\sqrt{2}$

 \Rightarrow f (x) > 2 $\sqrt{2} \times 6 - 1$ i.e. f (x) > 1 which is a contradiction.

Hence g (x) and g'' (x) cannot be both positive throughout the interval (-3, 3). Similarly we can prove that g(x) and g''(x) cannot be both negative throughout the interval (-3, 3). Hence there is atleast one value of $c \in (-3, 3)$ where g (x) and g'' (x) are of opposite sign \Rightarrow g (c) . g'' (c) < 0.

Alternate:

$$\int_{0}^{3} g(x)dx = \int_{0}^{3} f'(x)dx = f(3) - f(0)$$

$$\Rightarrow \left| \int_{0}^{3} g(x)dx \right| < 2 \qquad \dots \dots (1)$$
In the same way $\left| \int_{-3}^{0} g(x)dx \right| < 2 \qquad \dots \dots (2)$

$$\Rightarrow \left| \int_{0}^{3} g(x)dx \right| + \left| \int_{-3}^{0} g(x)dx \right| < 4 \qquad \dots \dots (3)$$

From $(f(0))^2 + (g(0))^2 = 9$ we get

 $2\sqrt{2} < g(0) < 3$ (4) or $-3 < g(0) < -2\sqrt{2}$ (5)

Case I: $2\sqrt{2} < g(0) < 3$

Let g (x) is concave upward \forall x (–3, 3) then the area

$$\left|\int_{-3}^{0} g(x) dx\right| + \left|\int_{0}^{3} g(x) dx\right| > 6\sqrt{2}$$

which is a contradiction from equation (3).

 $\begin{array}{l} \therefore \ g \ (x) \ will \ be \ concave \ downward \ for \ some \ c \\ \in \ (-3, \ 3) \ i.e. \ g'' \ (c) < 0 \qquad \dots \dots (6) \\ also \ at \ that \ point \ c \\ g \ (c) \ will \ be \ greater \ than \ 2 \ \sqrt{2} \\ \Rightarrow \ g \ (c) > 0 \qquad \dots \dots (7) \\ From \ equation \ (6) \ and \ (7) \\ g \ (c) \ . \ g'' \ (c) < 0 \ for \ some \ c \ \in \ (-3, \ 3). \end{array}$

IIT-JEE2005-M-7

