Centre No. Paper Reference Surname	Initial(s	5)
Candidate No. 4 4 3 7 / 5 H Signature	I	
Paper Reference(s) 4437/5H	Examiner's use	e only
London Examinations IGCSE	Team Leader's u	se only
Science (Double Award)		
Paper 5H		
Higher Tier	Question Number	Leave Blank
Specimen Paper	1	
Time: 1 hour 30 minutes	2	
Materials required for examination	3	
Nil Nil	4	
	5	
	6	
	7	
Instructions to Candidates	_ 8	
In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature. The paper reference is shown at the top of this page. Check that you have the correct question paper	9	
Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations and state the units. Calculators may be used	10	
Information for Candidates		
There are 15 pages in this question paper. All blank pages are indicated. The total mark for this paper is 90. The marks for the various parts of questions are shown in round brackets: e.g. (2).	_	
Advice to Candidates		
You are reminded of the importance of clear English and careful presentation in your answers.	_	

Specimen

edexcel ...

Total

THE PERIODIC TABLE

		2					Group						က	4	2	9	7	0	
Period 1							1 Hydrogen											4 Helica 2 2	
N	7 Li Lithium 3	Be Beryllium 4											11 B Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	19 Fluorine 9	20 N eon 10	
ო	Na Sodium	Mg Magnesium											Aluminium 13	Silicon 14	Phosphorus	Sulphur 16	Chlorine 17	Ar Argon	
4	39 K Potassium 19	40 Calcium 20	45 Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Iron 26	S9 Cobatt 27	Nickel 28	Copper Copper	Zinc Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	Selenium	80 Bromine 35	84 Krypton 36	
က	86 Rb Rubidium 37	88 Sr Strontium	89 Yttrium 39	91 Zirconium 40	Niobium A1	96 Mo Molybdenum 42	99 TC Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	Ag Silver 47	Cd Cadmium 48	115 In Indium 49	S in S	Sb Antimony 51	128 Tellurium 52	127 Odine 53	Xenon Xenon 54	
ဖ	133 CS Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	179 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Osmium 76	192 Ir Indium 77	195 Pt Platinum 78	Au Gold 79	201 Hg Mercury 80	204 Thallium 81	207 Pb Lead 82	209 Bismuth 83	Polonium 84	At Astatine 85	Padon Badon 86	
7	223 Fr Francium 87	226 Ra Radium 88	227 AC Actinium 89																

Relative atomic mass Symbol

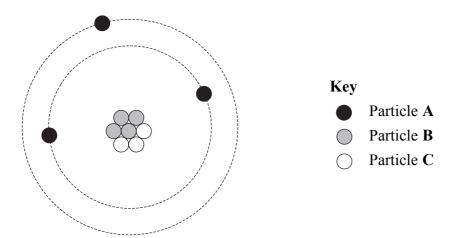
Specimen Papers and Mark Schemes – London Examinations IGCSE in Science (Double Award) (4437)
Publication code: UG014359 Issue 1, July 2004

ndustrial pro What is a cat	cess for the manufacture of		(1)						
-	cess for the manufacture of								
What is a cat	The industrial process for the manufacture of ammonia uses a catalyst of iron.(i) What is a catalyst?								
	alyst?								
			(2)						
		ork better when it is in the form	n of thin						
viies latilei t	man in large lumps:								
			(1)						
IPK fertilise	r is a mixture of chemicals	containing elements represente							
olete the foll	owing table.								
Symbol	Name of element	Formula of a compound containing this element							
N	Nitrogen	NH ₄ NO ₃							
P		P_2O_5							
K	Potassium								
			(2)						
hemical for	nula NH ₄ NO ₃ represents the	compound ammonium nitrate.							
How many at	coms of nitrogen are shown i	n the formula for ammonium nit	rate?						
			(1)						
What is the re	elative formula mass of amm	nonium nitrate?							
			(4)						
			(1)						
	Symbol N P K Chemical form	IPK fertiliser is a mixture of chemicals ols N, P and K. In plete the following table. Symbol Name of element N Nitrogen P K Potassium Shemical formula NH4NO3 represents the How many atoms of nitrogen are shown in the sh	IPK fertiliser is a mixture of chemicals containing elements represente ols N, P and K. Polete the following table. Symbol Name of element Formula of a compound containing this element N Nitrogen NH ₄ NO ₃ P P ₂ O ₅						

a) Name the process by which the potassium and manganate(VII) ions move through the water.
(1)
b) In what way would the outcome of the experiment be different, if at all, if warm water was used in place of cold water?
(1)
e) Explain your answer to part (b) in terms of movement of particles.

(d) The dot (•) below represents a single manganate(VII) ion. Draw lines from it to show the typical movement of the ion in water.

(2)


(Total 6 marks)

(2)

. (a)		aw a dot-and-cross diagram (representing outer electrons only) to show the type only present in methane (CH ₄).	of Led bla
		(1	l)
(b)		nen methane is burnt in a good supply of air it produces only water and carbo xide.	n
	(i)	Write a word equation for this reaction.	
		(1	 l)
	(ii)	Under what conditions would carbon monoxide gas also be produced?	
		(1	 l)
	(iii)) Why is it dangerous for methane gas to produce carbon monoxide?	
		(1	 l) Q3

4. (a) The diagram shows the arrangement of particles in an atom of the element lithium.

Leave blank

d C
1

Particle A	
Particle B	
Particle C	
	(3)

(11)	What is the mass number of the atom in the diagram?	

(iii) Use the diagram to explain why this element is in group 1 of the periodic table	-
	· • • • • •

(b)		dium chloride solution droxide.	is used to manufactur	e chlorine, hydrogen and	l sodium	Leave blank
	(i)	This manufacturing pro	ocess uses			
		A combustionB crackingC electrolysisD neutralisation				
		Write the correct answ	$\operatorname{er}(\mathbf{A}, \mathbf{B}, \mathbf{C} \text{ or } \mathbf{D})$ in the	box.	(1)	
	(ii)	Which product is used	in water purification?			
		A chlorineB hydrogenC sodium hydroxide Write the correct answ	er (A , B or C) in the box	.	(1)	
(c)	The (i)		show the number of the	se particles in the chloride		
	Γ		Chlorine atom (Cl)	Chloride ion (Cl ⁻)		
	+	Number of protons	17		<u></u>	
	-	Number of neutrons	18			
		Number of electrons	17		(3)	
	(ii)	What is the arrangeme	nt of electrons in a chlor	ine atom ?		
	(iii)) What is the arrangeme	nt of electrons in a chlor	ide ion?	(1)	
					(1)	Q4
				(Total 12	2 marks)	

5. The table below gives information about the main fractions obtained from crude oil.

	Boiling range	Number of carbon atoms
Fraction	in °C	in each molecule
Gas	-40 to 40	1 to 4
Petrol	40 to 100	4 to 8
Naphtha	100 to 160	6 to 10
Kerosene	160 to 250	10 to 16
Diesel oil	250 to 300	16 to 20
Fuel oil	300 to 350	20 to 25

(a)		e and explain the pattern shown between the boiling range of the fractions and the observation atoms in each molecule.
		(2)
(b)		l oil is cracked to form more useful products such as petrol and naphtha. Cracking duces a mixture of saturated and unsaturated hydrocarbons.
	(i)	Describe how cracking is carried out.
		(2)
	(ii)	Describe a test for an unsaturated hydrocarbon.
		(2)

(c)	Pro	pene (C ₃ H ₆) can be obtained by cracking alkanes.	Leav	
	(i)	Draw the structure of a molecule of propene showing all the bonds.		
		(2)		
	(ii)	One molecule of the alkane decane $(C_{10}H_{22})$ was cracked to give two molecules of propene and one molecule of an alkane.		
		Write the balanced equation for this reaction.		
		(2)		
(d)	Pro	pene is used to make poly(propene).		
	(i)	What feature of a propene molecule enables it to form poly(propene)?		
		(1)		
	(ii)	Draw the structure of the repeating unit in poly(propene).		
		(2)		
	(iii)	Poly(ethene) is used to make many types of bottle.		
	(111)			
		Suggest why the more expensive poly(propene) is used to make bottles for fizzy drinks.		
		(1)	Q	5
		(Total 14 marks)		

Name	Formula
aluminium chloride	AlCl ₃
calcium chloride	CaCl ₂
copper chloride	CuCl ₂

((a)) Only	y one of	fthe	chloride	solutions	is	coloure	d.

(i)	Which	chloride	solution	is	coloured?
•	1)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cilioriac	Solution	13	colourcu.

(1)

(ii) Use the periodic table to explain why you would expect this chloride solution to be coloured.

(1)

(b) Magnesium reacts with two of the chloride solutions in the table to precipitate a metal. One reaction is with copper chloride solution. The equation for this reaction is

$$Mg(s) + CuCl_2(aq) \longrightarrow MgCl_2(aq) + Cu(s)$$

(i)	Name the other cl	hloride solution	which reacts	to precipitate	a metal.	Write a
	balanced equation,	including state sy	ymbols, for its	reaction with	magnesiui	n.

Name

Equation

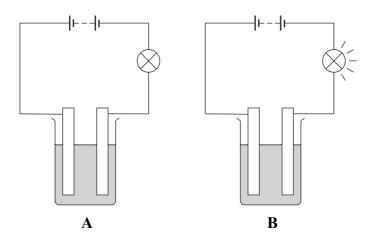
(4)

(ii) Explain why magnesium is said to be oxidised when it reacts with these two chloride solutions

(1)

(iii) Explain why magnesium does not react with the other chloride solution in the table.

(2)


(Total 9 marks)

Q6

•	0.20 25.0	00 m 0 cm	acentration of a solution of sodium hydroxide was found by titrating the solution with a solution of a solution of sodium hydroxide solution required 31.5 cm ³ of the sulphuric acid for the reaction.	blank
	(a)	(i)	Explain why Universal indicator is not a suitable indicator for use in titrations.	
			(1	 l)
		(ii)	Name a suitable indicator for this titration.	
			(1	1)
		(iii)	State the colour of the indicator in (a)(ii).	
			at the start of the titration	
			at the end of the titration	
	(b)		ite an equation, including state symbols, for the reaction that occurs during thation.	
		••••	(3	 B)
	(c)	Sod	dium hydroxide solution is used to test for copper(II) ions in solution.	
		(i)	Describe what you would see in this test.	
			(1	 l)
		(ii)	Write the ionic equation for this reaction.	
			(2	 2) Q7
			(Total 10 marks	s)

8. The following diagrams show what happens when an electric current was passed through lead bromide (PbBr₂). In diagram $\bf A$ the lead bromide is solid while in diagram $\bf B$ it is molten.

Leave blank

(a) (i) What difference do you observe between diagrams A and B?

(1)

- (ii) Which of the following is the best explanation for your observation? Draw a ring around the letter of your answer.
 - A Lead bromide only contains ions when it is molten
 - **B** Solid lead bromide is a covalent compound
 - C When lead bromide is molten the ions can move about
 - **D** Metals like lead are good conductors of electricity

(1)

(b) What is the name of the process that occurs in diagram **B**?

(1)

(c) Complete the table showing what happens at the electrodes in diagram ${\bf B}$.

Electrode	Name of product	Equation for reaction
positive	Lead	$Pb^{2+} + \dots \rightarrow Pb$
negative		$2Br^ 2e^- \rightarrow Br_2$

Q8

(2)

(Total 5 marks)

9. (a)	Phosphorus reacts with chlorine to form phosphorus trichloride, PCl ₃ . The equation for the reaction is	Leave blank
	$2P + 3Cl_2 \rightarrow 2PCl_3$	
	Calculate the maximum mass of phosphorus trichloride that can be made from 0.93 g of phosphorus. (Relative atomic masses: $P = 31$; $Cl = 35.5$)	
	(3)	
(b)	Phosphorus forms two chlorides which can exist as gases in equilibrium.	
	$PCl_3(g) + Cl_2(g) \Longrightarrow PCl_5(g)$	
	The formation of phosphorus pentachloride (PCl ₅) in this way is exothermic.	
	State, with a reason, the effect on the amount of phosphorus pentachloride present at equilibrium if	
	(i) the temperature is increased	
	effect	
	reason(2)	
	(ii) the pressure is increased	
	effect	
	reason (2)	
(c)	Carbon can form a chloride. 0.36 g of carbon is present in 4.62 g of carbon chloride. Calculate the empirical formula of this chloride.	
	(Relative atomic masses: $C = 12$; $Cl = 35.5$)	
		09
	(4) (Total 11 marks)	

(2)

(1)

(a) (i) Complete the table to show the number of protons and neutrons in the nuclei of the two isotopes of bromine.

Atomic number of isotope	Mass number of isotope	Number of protons	Number of neutrons
35	79		
35	81		

(ii) The relative atomic mass of bromine is 80.

Deduce the percentage abundance of the two isotopes in bromine.

(1)

(b) Bromine is extracted by blowing chlorine gas through sea water which contains bromide ions.

(i) Write an ionic equation for this reaction.

(2)

(ii) Explain why iodine could **not** be used instead of chlorine in this process.

c)	Bro	omine is reduced when it reacts with lodide ions.	Leave blank
		$Br_2(aq) + 2I^-(aq) \rightarrow 2Br^-(aq) + I_2(aq)$	
	(i)	Name one compound containing I ⁻ ions, which would be suitable for this reaction.	
		(1)	
	(ii)	State one change you would see as this reaction takes place.	
		(1)	
	(iii)	Explain why bromine is said to be reduced in this reaction.	
		(1)	
	(iv)	Complete the half equation to show the iodide ions being oxidised.	
		$I^- \rightarrow I_2 + \dots$ (2)	Q10
		(Total 11 marks)	

TOTAL FOR PAPER: 90 MARKS

END