Centre No.								Pap	er Refei	ence			Surname		Initia	ıl(s)
Candidate No.						4	4	3	7	/	4	Н	Signature			
			•	r Reference	/4H									Exan	niner's us	e only
			T	ΩN	do	n 1	Ū v	οn	.in	04	iar	30	IGCSE			
			L	MII	luv		LX	aII		al.	IUI	15	IGCSE	Team I	Leader's ι	ise only
			S	cie	nce	(D	ou	ble	Av	var	d)					
			B	iolo	ogy										Question	Leave
					r 4H										Number	Blank
				•			_								1	
			ŀ	11	gh	e	r '.	ľi	er						2	
				•	y 18						orn	ing			3	
					1 h							8			4	
			1.1	11110.	1 11	oui	<i>5</i> 0 i	11111	uics						5	
			Ma Nil		require	ed for	exami	nation	$-\frac{\mathbf{It}}{\mathbf{N}}$		clude	d with	question papers		6	
			1,11						- 1						7	
															8	
Instruction															9	
signature.			•							-			nitial(s) and		10	
Some ques answer, pu													mind about an coss (⊠).		11	
The paper Answer A												he cor	rect question pape	er.	12	
Show all to Calculator	he s	steps i	in any								T					
Culculator	5 11.	iay oc	usea.													
Informat The total r)() Th	e marl	cs for	the na	rts of	nnesti	ons ar	e sho	wn in round			
brackets: e	g.	(2) .		•				•		•		C 3110	wii iii iouliu			
There are	2 U]	pages	iii this	questi	on pap	er. Al	i dian	k page	s are	muica	iea.					
Advice to Write your				and i	2 0004	Engli	ah.									
write your	an	isweis	псану	anu ii	ı good	Engns	511.									

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

 $\stackrel{\text{Printer's Log. No.}}{N26276A}$

W850/4437/57570 5/7/5/4/3/400

Turn over

Total

Answer ALL the questions. Write your answers in the spaces provided.

1. The horse is a mammal and the digestive system is similar to that of humans.

The diagram shows the digestive system of a horse with parts labelled A, B, C and D.

(a) The statements below are about the digestive system. Choose the correct letter to match each statement. Put a cross (⋈) in the correct box.

This is where plant food is chewed	$\mathbf{A} \boxtimes$	B 🗵	\mathbf{C}	D 🗵
This is where faeces are stored	$\mathbf{A} \boxtimes$	B 🗵	\mathbf{C}	D 🗵
This is where most villi are found	A 🖾	В	C 🗵	D 🗵
				(3)

(b) Explain how food is moved along the oesophagus.

 (2)

(i) N	ame the carbohydrate found in	piant cen wans.				
			(1)			
(ii) W	Thy does a horse need vitamin	C?				
			(1)			
The ta	hle gives the energy needed b	y the horse at increasing levels	s of exercise from			
	walk to a gallop.	y the horse at mercasing levels				
	Level of exercise	Energy needed				
		in kJ per kg per hour				
	slow walk	7.1				
	fast walk	10.5				
	slow trot	27.1				
	medium trot	39.7				
	fast trot	57.3				
	gallop	96.1				
	Describe the relationship between the level of exercise and energy needed. (1) A horse weighing 500 kg walks fast for one hour. How much energy does in the second content of the secon					
us 	use?					
			(1)			

	blank
BLANK PAGE	
,	

Leave blank

2. The tubes below were used to breed insect flies. One tube was kept at 20 °C and the other tube was kept at 25 °C. Each tube contained one male and one female fly.

25°C male and female flies moist cereal and yeast

(a) (i) The sponge bung stops the flies escaping. It also allows gases to enter and leave the tube. Name **one** gas used by the flies and **one** gas produced by the flies.

gas produced	
	(1)

(ii) The flies feed on the yeast cells and the yeast cells feed on the cereal. Use this information to draw a food chain in the space below.

(2)

Leave blank

(2)

(b) The graph shows the number of male and female offspring produced in each tube after two weeks.

(i)	How many male offspring were produced after two weeks at 20°C?	
		(1)

(ii) More male offspring were produced after 2 weeks at 25 °C than at 20 °C. Calculate the percentage increase at the higher temperature. Show your working.

	% increase (2)
(c)	Suggest why more offspring were produced after two weeks at 25 °C.

6

(5)
Suggest one reason why equal numbers of male and female offspring were not obtained at 20 °C.
) Suggest one reason why equal numbers of male and female offspring were

(2)

3. The diagram shows a leaf from a crop plant before and after it was attacked by an insect pest.

After

	Belore	Titel
(a)	Suggest how the insect pests would af	fect crop yield.
		(3)
(b)	Explain why farmers often spray pesti	cide onto their crops.

(c) The table shows the changes in the numbers of an insect pest in a glasshouse during a period of 50 days. The crop was sprayed with pesticide twice during this time.

Time in days	Number of insects in thousands
0	44
5	54
6	6
14	8
20	12
28	20
29	16
35	28
42	42
50	54

	54	50	
	pesticide on day 5. Use the data in crop was sprayed with pesticide for t		
(1)			
sticide on	rs of the insect after spraying with pe	What was the decrease in number day 5?	
(1)			
	cides.	e two disadvantages of using pesti	Give
			1
			2
			•••••
(2)			
9 marks)	(Total		

BLANK PAGE		blank
BLANK PAGE		
	BLANK PAGE	

		bacter jejuni is a bacterium that causes food poisoning. Most people recover illness, but in some people serious problems occur.
The	effe	cts could lead to kidney failure and damage to red blood cells.
(a)	(i)	Name one substance that would not be removed from the body if the kidneys failed.
		(1)
	(ii)	Why would damage to red blood cells lead to problems?
		(1)
(b)	dan	other effect can be damage to nerve cells. This is caused when nerve cells are laged by the antibodies that the body produces to attack the <i>Campylobacter</i> teria.
	(i)	Name the cells in the body that produce antibodies.
		(1)
	(ii)	Damage to nerve cells that control breathing can lead to paralysis. The paralysis occurs because the muscles involved in breathing do not receive impulses to
		make them contract.
		Explain why paralysis of breathing muscles is dangerous.

Leave blank

5. Read the passage and answer the following questions.

When a sample of water is tested, its water quality is measured by finding out how much of its oxygen is used up when it is kept sealed in the dark for five days. The oxygen is used by microorganisms breaking down organic matter in the water. The amount of oxygen used up is called the biological oxygen demand or BOD, and is calculated in mg per litre. The higher the BOD the more polluted the water is. The table shows some typical BOD values.

Sample	BOD in mg per litre
Clean water	3
Polluted water	10
Water containing treated sewage	20
Water containing raw sewage	300

(a)	What is the BOD ratio between water containing raw sewage compared with water containing treated sewage?	
	(1)	
(b)	Explain why polluted water has a high BOD.	
	(3)	
(c)	What would happen to the BOD of clean water if eutrophication occurred?	
	(1)	Q5
	(Total 5 marks)	

	(Total 5 marks)

Leave blank

The diagram shows part of the carbon cycle. This shows how carbon compounds enter and leave living organisms.

carbon in atmosphere

(a) The arrows on the diagram represent various processes.

Write a word next to each arrow to show which process it represents. Choose your words from the list. Each word may be used once, more than once or not at all.

- respiration
- photosynthesis
- feeding

(4)

(b) On the diagram, draw and label **one** arrow to represent the process of decomposition.

Q7

(Total 5 marks)

8.	Chlorophyll is a g	green pigment	found in	plants. It	absorbs	light,	which	is	used	in
	photosynthesis.									

(a)	In which	cells of	the leaf	would y	you expect	to find	most o	chloroph	yll?
-----	----------	----------	----------	---------	------------	---------	--------	----------	------

	••••••
(1)	

(b) The graph shows the rate of photosynthesis of a plant when exposed to different colours of light. Different colours of light have different wavelengths.

At which two wavelengths of light is the rate of photosynthesis highest?

(2)

(c) Describe and explain the effect on the rate of photosynthesis you would expect if green light is shone on the leaf instead of blue light.

.....

(d) Name **two** factors, other than wavelength, that can affect the rate of photosynthesis.

1

(2

(Total 7 marks)

(2)

Q8

9. The diagram shows a section through the heart of a freshwater fish. The arrows show the direction of blood flow.

(a) (i) Give **two** ways in which the structure of the fish heart is similar to the heart of a human.

1

(ii) Give **two** ways in which the structure of the fish heart differs from the heart of a human.

1

2(2)

(b) The circulation system of a human is known as a double circulation system. Suggest why the circulation system of a fish is known as a single circulation system.

oxygen respiring cells glucose urea liver ADH (Total 12 marks	Substance (w	Origin here taken into the blood)	Destination (where removed from the blood)
urea liver ADH	oxygen		respiring cells
ADH (C	glucose		
	urea	liver	
	ADH		
(Total 12 marks			((
			(Total 12 marks

	(')	Name the common and the set DNA () ()	
	(1)	Name the enzyme used to cut DNA at a specific site.	
		(1)	
	(ii)	Name the enzyme used to join two sections of DNA.	
		(1)	
(b)	(i)	Name one human hormone that is produced by genetically modified bacteria.	
		(1)	
	(ii)	Give one advantage of using genetically modified bacteria to produce this hormone.	
		(1)	C
		(Total 4 marks)	

•	The passage below describes stages involved in the process of micropropagation in plants.
	Use suitable words to complete the sentences in the passage.
	Very small pieces are cut from the tips of stems or side shoots of a plant.
	When these pieces have been removed they are called
	of about 0.5 to 1 mm. They are then placed
	in medium
	containing and
	, which help the pieces to
	grow into small plants. When the small plants have grown roots they are
	transferred to a glasshouse. They are grown in pots containing
	, and
	conditions such as
	can be controlled. The small
	plants produced are called,
	which means they are genetically
	(Total 9 marks)

population of organisms.			
		(Tota	l 5 marks)
	TC	TAL FOR PAPER: 9	0 MARKS
	END		