Centre No.		Surname		Initial(s)		
Candidate No.		Signature		1		
	Paper Reference 4335/2H	[Exa	miner's use	e only
	Londo	n Exami	nations IGCS	E Team	Leader's u	ise only
	Chemis	stry		<u> </u>		
	Paper 2H	H			Question Number	Leave Blank
	High	ier Tie	er		1 2	
	•	8 May 2006 -	•		3	
	Time: 2 h	ours			4	
	Materials requi	red for examination	Items included with question pa	apers	5	
	Nil		Nil		6	
					7 8	
Instructions to	n Candidates				9	
		number and candidate	e number, your surname, initial(s	and	10	
The paper refere Answer ALL th	e questions in the space ps in any calculations	es provided in this qu	k that you have the correct questing uestion paper.	ion paper.		
Information f						
e.g. (2). There are 24 pa	for this paper is 120. The ges in this question page is given on page 2.		f questions are shown in round bare indicated.	rackets:		
Advice to Car	didates					
Write your answ	ers neatly and in good	l English.				

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited.

N24113A

W850/U4335/57570 3/3/2/700

Total

Turn over

THE PERIODIC TABLE

	-	Q					Group						ო	4	ις	9	7	0	
Period	_						-										L		
-							Hydrogen 1											Helium	
	7	6									-		=	5	4	16	19	20	
0	Lifthium	Be Berytlium											Boron 5	Carbon	Nitrogen 7	Oxygen	Fluorine	2 80 0	
•	8	\$2										<u> </u>	27	28	31	32	35.5	40	
က	Sodium 11	Mg Magnesium											Aluminium 13	Silicon 4-	Phosphorus	Sulphur 16	Chlorine 17	Argon 18	
	88	9		48	51	52	55	æ	29	55	63.5	65	52	73	75	62	88	28	
4	Potassium	Calcium Sidem	Scandium	Titanium	Vanadium	Chromium	Manganese	<u> 후</u>	S ^g	Z Š	J So	Z ^z z	Gallium	Germanium	As Arsenic	Seternium	Br omine	Krypton	
	98	88	88	2 6	93	2 8	8 8	8 5	, Z	82 50	20 108	30	115	32	S 62	8 5	S 721	36	
ഹ	Rubkium 37	Strontium	Y∰rium 39	Zr Zirconium 40	Niobium A1	Nb Mo TC Cobium Molybdenum Technetic	Tc Technetium	Ru Ruthenium	Rhodium	Pd Palladium	Ag Silver	Cadmium	r cien	် တို့ န	SD Antimony	Tellurium	- iodine	Xenon	
	133	137	139	179	181	.35	186	96	192	195	197	201	202	202	82	210	210	222	
ဖ	Caesium 55	Barium Serium Se	Lanthanum 57	Hathium 72	Ta Tantalum 73	W Tungsten 74	Re Rhenium 75	Osmium 76	Indium 77	Pt Platinum 78	Au Gold	Hg Mercury 80	TI Thallium 81	Pb Lead	Bismuth 83	Po Potonium 84	At Aslatine 85	Radon Res	
	223	526	227																
7	Francium	Radium	Actinium																

Key

Relative atomic mass
Symbol
Name
Atomic number

SECTION A

1.	Soi sol	me 1 utio	metals in Groups 1 and 2 of the Periodic Table react with cold water to form an of the metal hydroxide and a gas.
	(a)	Ho Gr	w many electrons are in the outer shell of the atoms of the metals in Group 1 and oup 2?
		Gre	oup 1
		Gre	oup 2
	(b)	(i)	Write a word equation for the reaction between sodium and water.
			(1)
		(ii)	Describe two observations that you could make during this reaction.
			1
			2
			(2)
	(c)	Litr	nus is used to test for one of the products of this reaction.
		(i)	What type of substance is litmus?
		(::\ <u>)</u>	
		(11)	How does it show that this product is present?
			(1)

	(i) Write a chemical equation for the reaction of magnesium with steam.		
		(1)	
	(ii) What colour is the oxide formed?		
		(1)	
(e)	The reactivities of sodium, potassium and magnesium are different. State which of the three is the		
	most reactive	***************************************	
	least reactive		
		(2)	
	·		r
	(Total 1	1 marks)	
	(Total 1		

2. The diagram shows apparatus for preparing carbon dioxide gas in the laboratory.

(a) Calcium chloride and water are also products of this reaction. Identify the reactants X and Y.

X	
Y	
	(2)

(b) The diagram shows carbon dioxide gas being collected over water. Suggest one other way to collect the gas.

(1)

(c)	By the end of the experiment the water in the trough is acidic. A sample is test universal indicator.	ieu wiiii
	(i) State the colour of universal indicator at the end of the test.	
		(1)
	(ii) Name the acid formed in the water and give its formula.	
	Name	
	Formula	(2)
	(iii) Define an acid in terms of proton transfer.	
		(1)
(d)	The melting point of calcium chloride is very much higher than that of wate the type of bonding in	
(d)	The melting point of calcium chloride is very much higher than that of water	r. State
(d)	The melting point of calcium chloride is very much higher than that of wate the type of bonding in	r. State
	The melting point of calcium chloride is very much higher than that of wate the type of bonding in calcium chloride	r. State
	The melting point of calcium chloride is very much higher than that of wate the type of bonding in calcium chloride	r. State
(e)	The melting point of calcium chloride is very much higher than that of wate the type of bonding in calcium chloride	r. State
(d) (e) (f)	The melting point of calcium chloride is very much higher than that of water the type of bonding in calcium chloride	r. State

3.	Cru	ide o	il is a source of useful chemicals.
	(a)	Con	aplete the sentence.
		Mos	st of the compounds in crude oil are composed of the elements
		•••••	and(1)
	(b)	Dur	ing refining, crude oil is first separated into fractions.
		(i)	What is the name of the process used to obtain fractions from crude oil?
			(1)
		(ii)	What is meant by the term fraction ?
			(1)
		(iii)	Describe how the fractions are obtained.
			(3)

. Alu	uminium is extracted from its oxide by electrolysis.	
(a)	Give two reasons why cryolite is used in the electrolysis of aluminium oxide. 1	********
	2	•••••
(b)	The same material is used for both the positive and negative electrodes.	(2)
	(i) What is this material?	
	(ii) Which gas is produced by electrolysis at the positive electrodes?	(1)
	(iii) Explain why these electrodes are replaced at regular intervals.	(1)
(c)	Explain why aluminium cannot be extracted using coke in a blast furnace.	(1)
		(1)
	State one major cost involved in the extraction of aluminium but not in the extra of iron.	action
		(1)

Leave blank

(e) The uses of aluminium are related to its properties. Complete the table by giving a **different** property for each use.

Use	Property
aeroplanes	
drinks cans	easily moulded
overhead power cables	
pans for cooking food	

Q4

(3)

(Total 10 marks)

TOTAL FOR SECTION A: 45 MARKS

SECTION B

5. A student added a 20 cm length of magnesium ribbon to 50 cm³ of 0.1 mol dm⁻³ hydrochloric acid. The magnesium was in excess. Hydrogen gas and magnesium chloride were formed. The volume of hydrogen gas formed was measured every 15 seconds.

(a) Write a chemical equation, with state symbols, for this reaction.

(3)

(b) The graph shows the results of the experiment.

(i) The student repeated the original experiment using 50 cm³ of 0.1 mol dm⁻³ hydrochloric acid and the same mass of magnesium **powder**. On the graph, sketch a line to show the results obtained. Label your line **A**.

(2)

(ii) The student repeated the original experiment using 50 cm³ of 0.05 mol dm⁻³ hydrochloric acid and the same length of magnesium ribbon. On the graph, sketch a line to show the results obtained. Label your line **B**.

(2)

d) Describe a test to show that the solution formed contains chloride ions. Test	at the solution formed contains chloride ions.		1
d) Describe a test to show that the solution formed contains chloride ions. Test	at the solution formed contains chloride ions. (3)		•-
d) Describe a test to show that the solution formed contains chloride ions. Test	at the solution formed contains chloride ions. (3)		••
d) Describe a test to show that the solution formed contains chloride ions. Test Result	at the solution formed contains chloride ions. (3)		
d) Describe a test to show that the solution formed contains chloride ions. Test	at the solution formed contains chloride ions. (3)		
Describe a test to show that the solution formed contains chloride ions. Test Result (3	at the solution formed contains chloride ions. (3)		
Test Result	(3)	(3	3)
Result	(3)	(d) Describe a test to show that the solution formed contains chloride ions.	
Result	(3)	Test	
Result	(3)		
Result	(3)		
(3	(3)		••
(3	(3)	Result	
(Total 13 marks	(Total 13 marks)		r
		(Total 13 marks))
	ı		

6.	(a)		orine is manufactured by the electrolysis of brine (concentrated sodium chloride ation). The electrolysis is carried out in a diaphragm cell using metal electrodes.
		(i)	Which metal is used for the anode?
			(1)
		(ii)	Which particles enable a metal to conduct electricity?
			(1)
		(iii)	Identify the particles which enable brine to conduct electricity.
			(2)
	(b)	Chl	orine reacts with methane. An equation for the reaction is
			$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
		(i)	What condition is normally used to start the reaction?
			(1)
		(ii)	What is seen when a strip of damp blue litmus paper is put into the reaction mixture before the reaction starts?
			(1)
		(iii)	What is seen when a strip of damp blue litmus paper is put into the reaction mixture after the reaction is complete?
			(1)

(c)	When chlorine reacts with ethane the composition by mass of one of the compounds formed is 24.24% carbon, 4.04% hydrogen and 71.72% chlorine. The relative formula mass of this compound is 99.	
	(i) Calculate the empirical formula of the compound.	
	(3)	
	(ii) Calculate the molecular formula of the compound.	
	(1)	
	(Total 11 marks)	
		1

7. Ethanol can be made by fermentation or by the reaction of ethene with steam in the presence of a phosphoric acid catalyst.

Two companies want to produce ethanol for different purposes. The table gives some information about the companies.

	Company A	Company B
Location of company	In agricultural area.	Semi-desert area, near oil refinery.
Reason ethanol required	To obtain a dilute solution for conversion to vinegar.	As a solvent.

(a) Which method of production should each company use? Give a reason for each choice.

Method used by company A
eason
fethod used by company B
eason
(4)

(b) Ethanol can be converted to a number of other substances.

Reaction 3

(3)

(c) Ethanol can be reacted with a carboxylic acid to form an ester. The equation shows the formation of the ester ethyl ethanoate.

A similar reaction is carried out using an alcohol and an acid, each containing two functional groups.

(i) Draw a diagram to show the structure of the polymer formed when these two compounds react together. You must make the repeat unit of the polymer clear.

(2)

(ii) What is the name of this type of polymer?

(1)

) Q7

(Total 10 marks)

 (a) Give the chemical equation for the reaction that is the main source of heat in furnace. (b) In a blast furnace the metal oxides are reduced by carbon monoxide, CO chemical equations for the reduction of zinc oxide, ZnO, and iron(III) oxide, Zinc oxide	(2 Write Fe ₂ O ₃
 (b) In a blast furnace the metal oxides are reduced by carbon monoxide, CO. chemical equations for the reduction of zinc oxide, ZnO, and iron(III) oxide, Zinc oxide Iron(III) oxide (c) In the extraction of iron, limestone is added to remove acidic impurities silicon dioxide, SiO₂. How does limestone remove silicon dioxide from the 	(2 Write Fe ₂ O ₃
chemical equations for the reduction of zinc oxide, ZnO, and iron(III) oxide, Zinc oxide	Fe ₂ O ₃ ,
Iron(III) oxide	(3)
(c) In the extraction of iron, limestone is added to remove acidic impurities silicon dioxide, SiO ₂ . How does limestone remove silicon dioxide from the	(3
silicon dioxide, SiO ₂ . How does limestone remove silicon dioxide from the	•
silicon dioxide, SiO ₂ . How does limestone remove silicon dioxide from the	such a
(d) In the extraction of zinc there is no need to add limestone to remove silicon of the temperature inside a blast furnace is over 1500 °C. Use the data in the explain why the zinc produced does not contain any silicon dioxide.	(4) lioxide
Substance Melting point (°C) Boiling point (°C)	
silicon dioxide 1610 2230	
zinc 420 907	
zinc oxide 1975 decomposes	
(d) In the extraction of zinc there is no need to add limestone to remove silicon of The temperature inside a blast furnace is over 1500 °C. Use the data in the	lioxi

((e) Blocks of zinc are sometimes attached to the bottom of steel ships. Explain why.	Leave blank
	(3)	Q8
	(Total 15 marks)	
•		

(4)

9.	When copper(I)	oxide	is heated	with	magnesium	a	redox	reaction	occurs.	The	ionic
	equation for this	reactio	n is								

$$2Cu^+ + Mg \rightarrow 2Cu + Mg^{2+}$$

(a) Identify the oxidising agent in this reaction, explaining your choice.

Oxidising agent

Explanation (2)

(b) The copper produced in this reaction is impure. It can be purified in two stages.

Describe what you would see when copper reacts with concentrated nitric acid.

(2)	

(c) In the electrolysis of copper nitrate solution, pure copper is deposited at the negative electrode.

$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

A current of 32 amperes is passed for 5 minutes. Calculate the mass of pure copper formed.

 $(1 \text{ faraday} = 96\,000 \text{ coulombs})$

 •	***********************	********************	***************************************
 •	***************************************	• • • • • • • • • • • • • • • • • • • •	••••••

.....

10. The flow chart shows the steps in the manufacture of sulphuric acid.

(a) Balance the equation to give the overall reaction that occurs.

......
$$S + O_2 + H_2O \rightarrow H_2SO_4$$
 (1)

(b) The following equation represents what happens in step 2.

$$2 O = S = O + O = O \rightarrow 2 O = S = O$$

The table shows some average bond dissociation energies.

Bond	Bond energy (kJ/mol)
0=0	496
s=o	493

(i) Calculate the energy change, ΔH , for the reaction in step 2.

Energy taken in to break bonds	Energy given out from making bonds
·	

$$\Delta H = \dots$$
 (3)

(ii) Draw a fully labelled energy profile for the reaction in step 2.
(3)
(c) Sodium hydroxide solution reacts with dilute sulphuric acid according to the equation $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
A 10.0 cm ³ sample of dilute sulphuric acid was titrated with 0.100 mol dm ⁻³ sodium hydroxide solution. It was found that 16.70 cm ³ of the sodium hydroxide solution were needed to neutralise the acid.
 (i) Outline how, in this titration, you would measure the volumes of the solutions used accurately determine the end-point.
•••••••••••••••••••••••••••••••••••••••
(4)

QUESTION 10 CONTINUES ON NEXT PAGE

(ii) Calculate the amount, in moles, of sodium hydroxide in 16.70 cm ³ of	blank
0.100 mol dm ⁻³ sodium hydroxide solution.	
(1)	
(iii) Calculate the amount, in moles, of sulphuric acid that reacts with this amount of sodium hydroxide.	
(1)	
(iv) Calculate the concentration, in mol dm ⁻³ , of the sulphuric acid.	
(x-) cancaration of the control of t	
(1)	Q10
(Total 14 marks)	
TOTAL FOR SECTION B: 75 MARKS	<u>. </u>
TOTAL FOR PAPER: 120 MARKS	
END	