|                | Centre Number | Candidate<br>Number |
|----------------|---------------|---------------------|
| Candidate Name |               |                     |

# International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS

PHYSICS 0625/5

PAPER 5 Practical Test ANSWER BOOKLET

**MAY/JUNE SESSION 2002** 

1 hour 15 minutes

**TIME** 1 hour 15 minutes

#### **INSTRUCTIONS TO CANDIDATES**

Write your name, Centre number and candidate number in the spaces provided at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in the Answer Booklet.

[Turn over

1

| (c) | a =        |     |
|-----|------------|-----|
|     | <i>b</i> = | [4] |

(d) Calculation of M, where  $M = \frac{kb}{a}$  and k = 100 g.

$$M = \dots$$
 [2]

(e) Explanation of how you could judge that the centre of the 100 g mass was directly above the 10.0 cm mark

[3]

(g) Calculation of the average of the two values of M

average value of 
$$M = \dots$$
 [4]

# 2 Method 1

(a) - (d)

| time/s | total volume of cold<br>water added/cm <sup>3</sup> | temperature/°C |
|--------|-----------------------------------------------------|----------------|
| 0      | 0                                                   |                |
| 30     |                                                     |                |
| 60     |                                                     |                |
| 90     |                                                     |                |
| 120    |                                                     |                |
| 150    |                                                     |                |

| Met | hod 2         |                                                      | [5] |
|-----|---------------|------------------------------------------------------|-----|
| (f) | Record of     | the temperature of the hot water                     |     |
| (h) | Record of     | the temperature of the mixture of hot and cold water | [3] |
| (i) | Tick the a    | ppropriate box.                                      |     |
|     |               | Method 1 produces the larger temperature drop.       |     |
|     |               | Method 2 produces the larger temperature drop.       |     |
|     |               | Methods 1 and 2 produce the same temperature drop.   | [1] |
|     | Justification | on                                                   |     |
|     |               |                                                      | [0] |

| , |   | • |
|---|---|---|
| • | ı | ١ |
| • | ı | , |

| Modification 1 |     |
|----------------|-----|
|                |     |
| Modification 2 |     |
|                |     |
|                | [2] |

(k)



[2]

3

(b), (d), (e)

| u/cm | v/cm |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |

[4]

(g) 
$$u_0 = \dots$$
 [2]

**(h)** Calculation of f using the equation  $f = u_0/2$ 

(f), (g)



[7]

4

| (a) | Record of I                                                                        |     |
|-----|------------------------------------------------------------------------------------|-----|
|     | Record of V <sub>1</sub>                                                           |     |
| (b) | Record of V <sub>2</sub>                                                           | [4] |
| (c) | Calculation of $V_1/V_2$                                                           | [4] |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     | $V_1/V_2 = \dots$                                                                  | [3] |
| (d) | Calculation of $R_1$ using $R = V/I$                                               |     |
|     |                                                                                    |     |
|     | $R_1 = \dots$                                                                      |     |
|     | Calculation of $R_2$ using $R = V/I$                                               |     |
|     |                                                                                    |     |
|     | <i>R</i> <sub>2</sub> =                                                            | [2] |
| (e) | Calculation of $R_1/R_2$                                                           |     |
|     |                                                                                    |     |
|     | $R_1/R_2 = \dots$                                                                  | [2] |
| (f) | Within the limits of experimental error, the values of $V_1/V_2$ and $R_1/R_2$ are |     |
|     |                                                                                    | [1] |
|     |                                                                                    |     |

(g) Circuit diagram

[3]