Version1.0: 29/02/2012

JA

A

$v = \frac{s}{t}$	 v velocity s displacement t time
$a=\frac{v-u}{t}$	 a acceleration v final velocity u initial velocity t time taken
$F = m \times a$	F forcem massa acceleration
$p = m \times v$	p momentum m mass v velocity
$F = \frac{\Delta p}{t}$	F force Δp change in momentum t time
$W = m \times g$	 W weight m mass g gravitational field strength (acceleration of free fall)
F = k × e	<i>F</i> forcek spring constante extension
$W = F \times d$	 W work done F force d distance moved in the direction of the force
$P = \frac{W}{t}$	<pre>P power W work done t time</pre>
$E_{\rm p} = m \times g \times h$	 <i>E</i>_p change in gravitational potential energy <i>m</i> mass g gravitational field strength (acceleration of free fall) <i>h</i> change in height
$E_{\rm k} = \frac{1}{2} \times m \times v^2$	 <i>E</i>_k kinetic energy <i>m</i> mass <i>v</i> speed

Copyright © 2012 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723). Registered address: AQA, Devas Street, Manchester M15 6EX

Version1.0: 29/02/2012

$T = \frac{1}{f}$	<i>T</i> time period<i>f</i> frequency
$M = F \times d$	 <i>M</i> moment of the force <i>F</i> force <i>d</i> perpendicular distance from the line of action of the force to the pivot
$P = \frac{F}{A}$	<i>P</i> pressure<i>F</i> force<i>A</i> cross-sectional area
$v = f \times \lambda$	v speed f frequency λ wavelength
$s = v \times t$	<pre>s distance v speed t time</pre>
$n = \frac{\sin i}{\sin r}$	 <i>n</i> refractive index <i>i</i> angle of incidence <i>r</i> angle of refraction
$n = \frac{1}{\sin c}$	<i>n</i> refractive index<i>c</i> critical angle
$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	 u object distance v image distance f focal length
magnification = $\frac{\text{image}}{\text{object}}$	-
$P = \frac{1}{f}$	<i>P</i> power of a lens<i>f</i> focal length
$E = m \times c \times \theta$	 <i>E</i> energy <i>m</i> mass <i>c</i> specific heat capacity <i>θ</i> temperature change
$E = m \times L_v$	$ \begin{array}{l} E & {\rm energy} \\ m & {\rm mass} \\ L_{\rm V} & {\rm specific \ latent \ heat \ of \ vaporisation} \end{array} $
$E = m \times L_{\rm F}$	E energy

Copyright © 2012 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723). Registered address: AQA, Devas Street, Manchester M15 6EX

Version1.0: 29/02/2012

	m mass $L_{\rm F}$ specific latent heat of fusion	
efficiency = $\frac{\text{useful energy out}}{\text{total energy in}}$ (× 100%)		
efficiency = $\frac{\text{useful power out}}{\text{total power in}}$ (×100%)		
$l = \frac{Q}{t}$	 <i>I</i> current <i>Q</i> charge <i>t</i> time 	
$V = \frac{E}{Q}$	V potential differenceE energy transferredQ charge	
$V = I \times R$	V potential difference<i>I</i> current<i>R</i> resistance	
$P = \frac{E}{t}$	 <i>P</i> power <i>E</i> energy transferred <i>t</i> time 	
$P = I \times V$	 <i>P</i> power <i>I</i> current <i>V</i> potential difference 	
$E = V \times Q$	 <i>E</i> energy transferred <i>V</i> potential difference <i>Q</i> charge 	
$E = P \times t$	 <i>E</i> energy transferred from the mains <i>P</i> power <i>t</i> time 	
$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$	$V_{\rm p}$ potential difference across the primary coil $V_{\rm s}$ potential difference across the secondary coil $n_{\rm p}$ number of turns on the primary coil $n_{\rm s}$ number of turns on the secondary coil	
$V_{\rm p} \times I_{\rm p} = V_{\rm s} \times I_{\rm s}$	$ \begin{array}{ll} V_{\rm p} & \mbox{potential difference across the primary coil} \\ I_{\rm p} & \mbox{current in the primary coil} \\ V_{\rm s} & \mbox{potential difference across the secondary coil} \\ I_{\rm s} & \mbox{current in the secondary coil} \\ \end{array} $	

Copyright © 2012 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723). Registered address: AQA, Devas Street, Manchester M15 6EX