

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/11

Paper 1 Multiple Choice October/November 2015

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

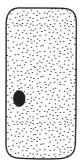
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 20.

Electronic calculators may be used.

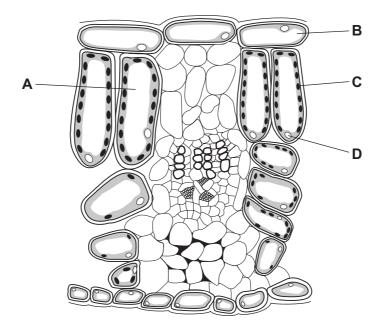
- 1 The following three equations represent metabolic processes.
 - 1 glucose → glycogen
 - 2 carbon dioxide + water \rightarrow glucose + oxygen
 - 3 oxygen + glucose → carbon dioxide + water


Which equations represent nutrition and respiration?

	nutrition	respiration
Α	1	2
В	2	3
С	3	1
D	3	2

- 2 What is correct for all living organisms?
 - **A** They are sensitive to changes in their environment.
 - **B** They excrete solid waste from their bodies.
 - **C** They feed on other living organisms.
 - **D** They grow larger by increasing their cell number.
- 3 The diagram shows a plant cell and an animal cell. The two cells are **not** drawn to the same scale.

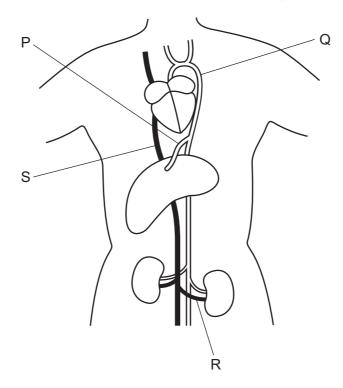
magnification ×2000


The actual height of the animal cell is 0.02 mm.

What is the height of the plant cell?

- **A** 0.01 mm
- **B** 0.02 mm
- **C** 0.04 mm
- **D** 40 mm

- **4** What would be capable of digesting an enzyme?
 - A amylase
 - **B** bile
 - C lipase
 - **D** protease
- 5 The diagram shows a section through a leaf.


Where are carbohydrates made?

6 Nutrient molecules are made up from smaller molecules. Nutrients can be identified by food tests.
Which row correctly describes a protein?

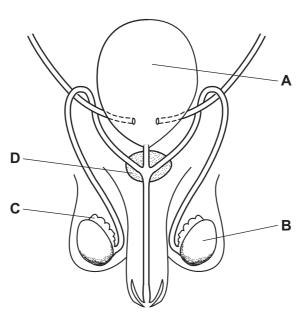
	smaller molecules	test which gives a positive result	
Α	amino acids	Benedict's test	
В	amino acids	biuret test	
С	sugars	Benedict's test	
D	sugars	biuret test	

7 The diagram shows the heart, liver and kidneys with connecting blood vessels.

What are the labelled blood vessels?

	aorta	hepatic artery	vena cava	renal vein
Α	Q	Р	S	R
В	Q	R	S	Р
С	S	Р	Q	R
D	S	R	Q	Р

8 Which part of the alimentary canal is in the form of a coiled tube?


- A oesophagus
- **B** pancreas
- C rectum
- **D** small intestine

9 Which row shows the changes that occur during exercise?

	breathing rate	depth of breathing	
Α	greater	greater	
В	greater	same	
С	same	greater	
D	same	same	

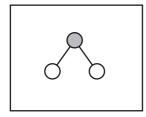
- **10** To which environmental stimulus is a plant root responding when it grows downwards?
 - A a decrease in soil water content
 - **B** light falling on the leaves of the plant
 - **C** rising temperature
 - **D** the force of gravity
- **11** The diagram shows the male reproductive system.

Which structure produces the hormones that control adolescence?

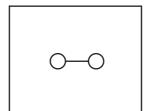
12 What are the features of human reproduction?

	haploid nuclei fuse	zygote formed in oviduct	offspring genetically identical
Α	✓	✓	X
В	✓	x	✓
С	X	✓	X
D	X	X	✓

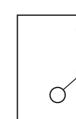
- 13 Deforestation can cause global warming because it leads to
 - **A** build up of carbon dioxide.
 - B extinction of species.
 - C flooding of low-lying areas.
 - **D** loss of soil.


14 W, X, Y and Z are diagrams of atoms and molecules.

W

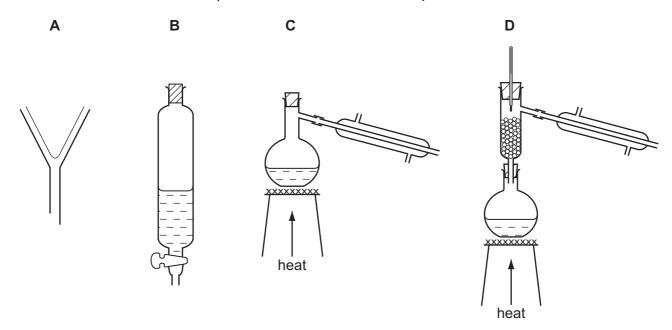


Υ

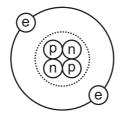

Ζ

Χ

Υ

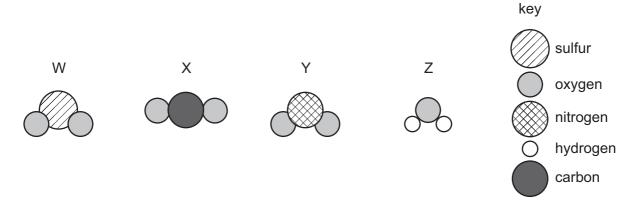


Which statement is correct?


- **A** W and Z are molecules and X and Y are atoms.
- **B** W, X and Z are molecules and Y is an atom.
- **C** W, Y and Z are molecules and X is an atom.
- **D** X, Y and Z are molecules and W is an atom.

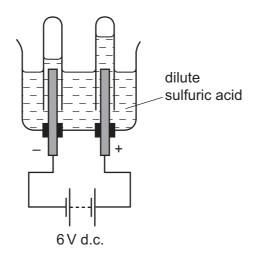
15 Hexane and octane are liquid hydrocarbons that mix together.

Which method is used to separate a mixture of these two liquids?


16 The diagram shows a helium atom.

Which particles in the helium atom have approximately the same mass?

- A electron and proton only
- B electron and neutron only
- **C** proton and neutron only
- **D** electron, proton and neutron
- 17 Which change is a physical change?
 - A burning fuels
 - B electrolysis of dilute sulfuric acid
 - C melting ice
 - D neutralising acids


18 Diagrams W, X, Y and Z represent the structures of four different compounds.

Which row identifies these compounds?

	W	Х	Y	Z
Α	NO ₂	CO ₂	H ₂ O	SO ₂
В	NO_2	H ₂ O	SO ₂	CO ₂
С	SO_2	CO_2	NO_2	H ₂ O
D	SO ₂	NO ₂	CO ₂	H ₂ O

19 The diagram shows the electrolysis of dilute sulfuric acid.

Which substance is produced at the negative electrode?

- A hydrogen
- **B** oxygen
- C sulfur dioxide
- **D** water

20 Lime is manufactured by heating limestone.

Lime is used to control the acidity of soil.

Which types of chemical change occur in these two reactions?

	heating limestone	controlling acidity
Α	endothermic	oxidation
В	endothermic	neutralisation
С	exothermic	oxidation
D	exothermic	neutralisation

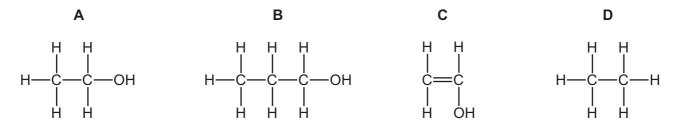
21 Nitrogen from the air is used to manufacture ammonia.

Why is a catalyst used in this reaction?

- A Nitrogen from the air is not pure.
- **B** Nitrogen is a gas at room temperature.
- C Nitrogen is a non-metallic element.
- **D** Nitrogen is not very reactive.
- **22** Hydrochloric acid reacts with excess solid sodium carbonate to form sodium chloride, water and carbon dioxide gas.

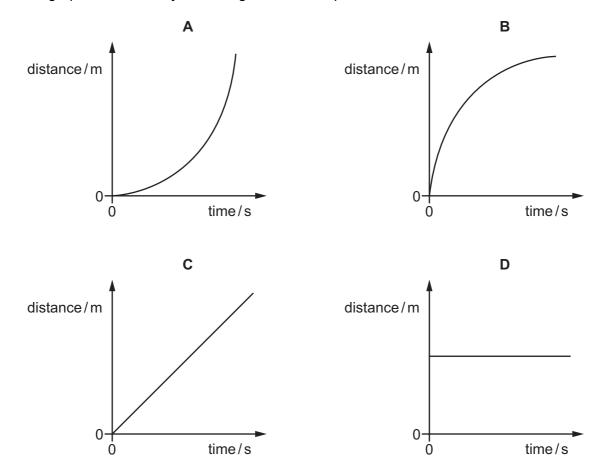
Which method is used to investigate the speed of this reaction?

- A Measure the pH of the reaction mixture after 10 minutes.
- **B** Measure the time taken for all of the solid to dissolve.
- **C** Measure the total volume of gas produced.
- **D** Measure the volume of gas produced every minute.


23 The table shows the results of some tests on a compound.

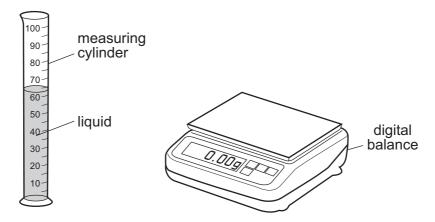
test	result
adding dilute sodium hydroxide	green precipitate
adding acidified barium nitrate	white precipitate

				add	ing allute so	oaium ny	aroxiae	greei	n pre	ecipitate
		adding acidified barium nitrate white precipitate					ecipitate			
	What is the compound?									
	Α	iron(II) c	chlorid	е						
	В	iron(II) s	sulfate							
	С	iron(III)	chloric	de						
	D	iron(III)	sulfate)						
24	An	element i	s a so	lid at	room tempe	erature a	ınd does ı	not con	duct	electricity.
	Wh	at is the p	oroton	num	ber of this e	lement?				
	A	11		В	19	С	35		D	53
25	Soi	me of the	gases	foun	d in polluted	d air are	listed.			
		1	carbo	n mo	noxide					
		2	carbo	n dio	xide					
		3	nitrog	en di	oxide					
		4	sulfur	diox	ide					
	Wh	ich gases	cause	e the	erosion of b	ouildings	?			
	Α	1 and 3		В	1 and 4	С	2 and 4		D	3 and 4
26	Wh	at is limes	stone?	•						
	Α	calcium	carboı	nate						
	В	calcium	chloric	de						
	C calcium hydroxide									
	D	calcium	ovide							


27 Four molecules are shown.

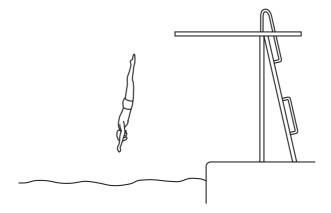
Which structure represents ethanol?

28 The following are distance/time graphs.


Which graph shows an object moving at constant speed?

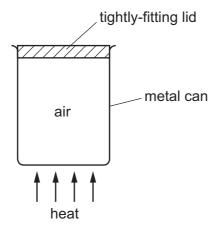
29 Which row identifies a quantity or quantities that can be measured in newtons?

	electromotive force (e.m.f.)	mass	weight
Α	no	no	yes
В	no	yes	yes
С	yes	no	no
D	yes	yes	no


30 A student pours liquid into a measuring cylinder.

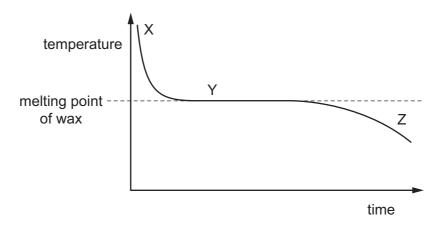
The student records the volume of the liquid from the scale on the measuring cylinder. He then puts the measuring cylinder containing the liquid on a balance and records the mass.

What else needs to be measured before the density of the liquid can be calculated?


- A the depth of the liquid in the measuring cylinder
- **B** the mass of the empty measuring cylinder
- C the temperature of the liquid in the measuring cylinder
- **D** the volume of the empty measuring cylinder
- 31 The diagram shows a man diving into water.

Which form of energy is increasing as he falls?

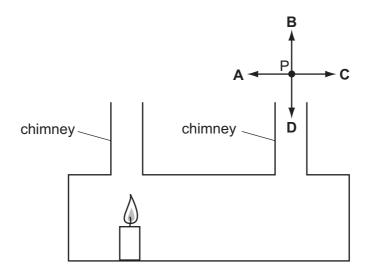
- A chemical
- **B** gravitational
- C kinetic
- **D** strain


32 Some air is trapped inside a metal can with a tightly-fitting lid.

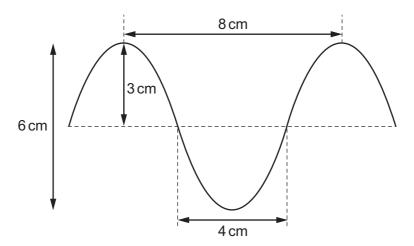
The can is heated strongly behind a safety screen. The lid is blown off by the increased pressure of the air inside the can.

What causes the increase in pressure of the air inside the can?

- **A** The air molecules expand and take up more room.
- **B** The air molecules move more quickly.
- **C** The number of molecules inside the can increases.
- **D** The volume occupied by the molecules decreases.
- **33** A student carries out an experiment to find the melting point of wax. The graph shows how the temperature of the wax changes as it changes from liquid to solid.



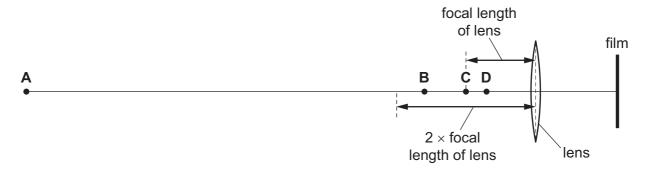
Which statement is correct?


- **A** At X the temperature drops more slowly than at Z.
- **B** At Y all the wax is solid.
- **C** At Y thermal energy is being given out by the wax.
- **D** At Z the wax molecules are far apart.

34 A teacher demonstrates convection currents using a lighted candle in a box with two chimneys. She holds a smoking taper at point P.

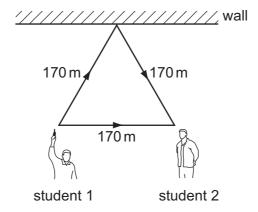
In which direction does the convection current cause the smoke to move?

35 The diagram shows a wave.



What are the amplitude and the wavelength of this wave?

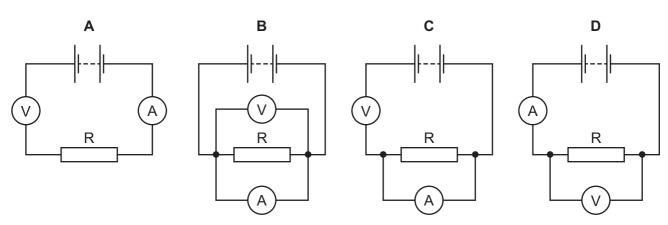
	amplitude/cm	wavelength/cm
Α	3	4
В	3	8
С	6	4
D	6	8


36 The converging lens in a camera is used to make an image on a film. The image is smaller than the object.

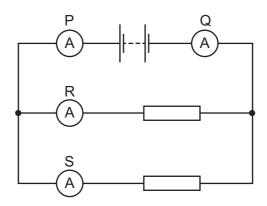
At which labelled point is the object positioned?

37 Student 1 and student 2 stand 170 m apart as shown in the diagram.

Student 1 fires a starting pistol. Student 2 hears the sound twice, once by the direct route and once from the reflection from the wall.



The speed of sound in air is 340 m/s. What is the interval between hearing the two sounds?


- **A** 0.25s
- **B** 0.50s
- **C** 1.0 s
- **D** 2.0 s

38 A student wishes to determine the resistance of resistor R. She uses a circuit including a voltmeter and an ammeter.

Which circuit should be used?

39 A student uses four ammeters P, Q, R and S to measure the current in different parts of the circuit shown.

Which two ammeters read the largest current?

- **A** P and Q
- **B** P and R
- **C** R and Q
- **D** R and S

40 The table compares an atom of carbon-13 and an atom of nitrogen-14.

	carbon-13	nitrogen-14
nucleon number A	6	7
proton number Z	13	14

A neutral atom of carbon-13 and a neutral atom of nitrogen-14 have the same number of

- A electrons.
- B ions.
- C neutrons.
- D protons.

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne Ne 10 Ar 40 Ar	Argon 18	84 Kr Krypton	Xe Xenon 54	222 Rn Radon 86		175 Lu Lutetium 71	260 Lr Lawrencium 103
Group	=>		19 Fluorine 9 35.5 C1	Chlorine 17	80 Br Bromine	127 I lodine	210 At Astatine 85		173 Yb Ytterbium 70	No Nobelium 102
	 		16 Oxygen 8	Sulfur 16	79 Se Selenium	128 Te Tellurium	209 Po Polonium 84		169 Tm Thulium 69	258 Md Mendelevium 101
	>		14 Nitrogen 7	Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	257 Fm Fermium 100
	≥		12 Carbon 6 Si	Silicon 14	73 Ge Germanium	S0 Tin	207 Pb Lead 82		165 Ho Holmium 67	252 Es Einsteinium 99
	=		11 B Boron 5 27 A1	Aluminium 13	70 Ga Gallium	115 In Indium	204 T (Thallium		162 Dy Dysprosium 66	251 Cf Californium 98
					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	247 BK Berkelium 97
					64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	247 Cm Curium
					59 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	243 Am Americium
					59 Cobalt	103 Rh Rhodium 45	192 Ir Iridium		150 Sm Samarium 62	244 Pu Plutonium 94
		1 Hydrogen			56 Fe	101 Ru uthenium	190 Os Osmium 76		147 Pm Promethium 61	Np Neptunium
					Mn Manganese		186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
					52 Cr Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	231 Pa Protactinium 91
					51 V Vanadium	Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
					48 Ti Titanium	2r Zrconium 40	178 Hf Hafinium 72			nic mass bol nic) number
					Scandium	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	d series series	a = relative atomic massX = atomic symbolb = proton (atomic) number
	=		Be Berylium 4	Magnesium 12	40 Calcium	Strontium 38	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series	м Х
	_		Lithium 3 Lithium 23 Na	Sodium 11	39 X Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.