Centre						Surname			Initial(s))		
No.									L			
Candida	ite No.					Signature						
			Paper	Reference((s)	J L				Exan	niner's us	e only
			43	335	/1F							
			L	on	ldo	n Exar	ninatio	ons IGCS	\mathbf{SE}_{1}^{L}	Team I	Leader's u	ise only
			C	he	mis	try						
			Pa	apei	r 1F						Question Number	Leave Blank
			F	70	11 Y	ndati	on Ti	er			1	
											2	
	Wednesday 16 May 2007 – Morning							3				
	Time: 1 hour 30 minutes						4					
			Ma	iterials	reauir	ed for examinatio	on Items inclu	ded with question pa	ners		5	
			Nil			<u> </u>	Nil	dea week decision bal	<u> </u>		6	
											7	
											8	
Instru	ction	s to (Candid	lates							9	
In the b		above	, write	your ce	entre n	umber and candid	date number, you	r surname, initial(s) a	and		10	
The pa	per ref							ve the correct question	n paper	:	11	
Show a	all the	steps	in any c			es provided in this nd state the units					12	
Calcula	ators n	ay be	e used.									
Inform	natio	n for	Candi	dates								
The tot e.g. (2)		k for	this pap	per is 1	100. T	he marks for par	ts of questions ar	re shown in round br	ackets:			
There a	are 20		s in this			er. All blank paş	ges are indicated.					
				on pag	,v 2.							
Advic				ond:	2 0004	English				_		
write y	your al	iswer	s neatry	anu ii	1 good	English.						
											\vdash	—

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. @2007 Edexcel Limited.

Printer's Log. No. N25726A W850/U4335/57570 4/4/2/500

Turn over

edexcel

advancing learning, changing lives

Total

	0	4 Helium 2	20 Neon 10 10 40 Argon	18 84 84 Krypton 36 36 Xe	Xenon 54 222 Radon 86		
	7		19 Fluorine 35.5 Cl	90 Bromine 35 127	Astatine 85		
	ဖ		16 Oxygen 8 8 32 Sulphur	Selenium 34 Te			
	Ŋ		Nitrogen 7 31 Phosphorus	15 75 75 AS and Arsenic 33 33 Sb Sb	Antimony 51 209 Bi Bismuth 83		
	4		Carbon Carbon Silicon Silicon Silicon	Germaniu 32 32 119 Sn			
	ო		Boron 5 Alwinium	13 70 70 Gallium 31 31 115 II 5	Indium 49 204 TI Thallium 81		
ш				65 Zinc 30 30 112 Cd	Cadmium 48 201 Hg Mercury 80		
THE PERIODIC TABLE				63.5 Copper 29 108 Aq	Silver 47 197 Au Gold		
RIODIC				28 28 28 Pd	Palladium 46 195 Pt Platinum 78		
HE PE				Cobalt 27 103			
-				% Fe 50 101 101 101 101 101 101 101 101 101	Ruthenium 44 190 OS Osmium 76		lomic ol nber
	Group	Hydrogen 1		Manganese 25 99	Molybdenum Technetium 42 43 184 186 W Ree Tungsten Rhenium 74		Key Relative atomic mass Symbol Name Atomic number
				Chromium 24 86	Molybdenum 42 184 W Tungsten 74		
				Vanadium 23 93 Nb	Niobium 41 41 181 Ta Tantalum 73		
				<u> </u>	Zirconium 40 179 HAminum 72		
				Scandium 21		Actinium 89	
	α		9 Be- Beryllium 4 24 24 Mg Maonesium	Calcium 20 88 Sr		<u> </u>	
	-	_	Lithium 3 3 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Potassium 19 88 Rb	Rubidium 37 133 CS Caesium 55	Francium 87	•
		Period 1	α σ	4 ro		~	

Look at the Periodic Table on page 2. (a) Give the symbol of the element that has the atomic number of 12. (1) (b) Give the symbol of the element that has a relative atomic mass of 12. (1) (c) Give the number of the group that contains the noble gases. (1) (d) Which group contains elements whose atoms form ions with a 2+ charge?
b) Give the symbol of the element that has a relative atomic mass of 12. (1) (1) (1) (1) (1) (1) (1) (1
b) Give the symbol of the element that has a relative atomic mass of 12. (1) (1) (1) (1) (1) (1) (1) (1
(1) (c) Give the number of the group that contains the noble gases. (1) (d) Which group contains elements whose atoms form ions with a 2+ charge?
c) Give the number of the group that contains the noble gases. (1) d) Which group contains elements whose atoms form ions with a 2+ charge?
d) Which group contains elements whose atoms form ions with a 2+ charge?
d) Which group contains elements whose atoms form ions with a 2+ charge?
(1)
(e) Which group contains elements whose atoms form ions with a 1– charge?
(1)
(Total 5 marks)

(a)	Where in the atom are the protons and neutrons?
<i>~,</i>	
	(1)
b)	Which type of particle in the atom is in orbits (shells)?
	(1)
2)	Which one of the particles has a positive charge?
	(1)
d)	Which two particles have approximately the same mass?
	(1)
e)	What name is given to atoms of the same element which contain different numbers of
-,	neutrons?
	(1)
	(1) (Total 5 marks)

(a)	Name the two substances in damp air that react with the iron.
	1
	2
	(2)
(b)	What is the brown layer?
	(1)
(c)	The reaction between iron and damp air can be prevented by covering the iron with
c)	another material. Name two materials that can be used.
	1
	2
	(2)
	(Total 5 marks)

	(i) What is a covalent bond?
	(1)
	(ii) Draw a dot and cross diagram to show the covalent bond in a hydrogen molecule.
	(1)
(b)	Describe a test for hydrogen gas.
	Test
	Result(2)
(c)	Give one industrial use of hydrogen.
	(1)
(d)	The only product of the combustion of hydrogen is water. Write a word equation for the combustion of hydrogen.
	(1)

blue greei	brown n red	colourless white	
		quid which changes the colour of	the
		to	
(ii) What type of rea	action occurs in this test	? Put a cross (☒) in the correct box.	
condensation	\boxtimes		
hydration	\boxtimes		
neutralisation			
			(1)
		(Total 10 mar	ks)

The rea	ectivity of metals can	be compared by their	reactions with dilute hydrochlori	ic
	ifferent metals are add	ded to separate test tubes	s containing this acid.	
	agram shows bubbles ydrochloric acid.	of hydrogen gas forming	g when a piece of zinc is added to	co.
(a) Con	mplete the diagram to	show the bubbles formi	ng in the other two test tubes.	
	zinc	iron	magnesium	
			(2	2)
(b) Wr	ite a word equation fo	r the reaction between z	inc and dilute hydrochloric acid.	
••••				
			(1	l)
(c) Nar		es not form bubbles whe	en it is added to dilute hydrochlori	ic
			(1	 D
			(1	
	entify two substances, of ctivity of metals.	other than acids, that can	(1) be used in reactions to compare th	
rea	ctivity of metals.			ie
rea	ctivity of metals.		be used in reactions to compare th	ie

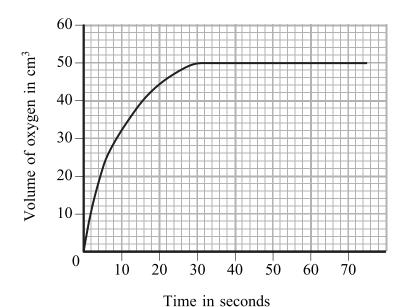
(Total 6 marks)

A s	tudent tests a solution to see if it contains CO_3^{2-} ions.	
The	e first part of this test involves this reaction:	
	$2H^{+}() + CO_{3}^{2-}(aq) \rightarrow H_{2}O() + CO_{2}()$	
(a)	One state symbol is given in the equation. Write the other state symbols in the spa	aces
	provided.	(3)
(b)	Name a reagent that can be used to provide the H ⁺ ions in the reaction.	
		(1)
(c)	Give the name for each of the following formulae:	
	CO ₃ ²⁻	
	CO ₂	
		(2)
(d)	The second part of the test involves using Ca(OH) ₂ to detect the CO ₂ .	
	(i) What is the chemical name for $Ca(OH)_2$?	
		(1)
	(ii) The Ca(OH) ₂ is dissolved in water to make a solution when doing the test CO ₂ . What is the common name for this solution?	foi
		(1)
	(iii) What is seen during this test for CO ₂ ?	
		(1)
	(iv) Complete the chemical equation for the reaction between these two substance	es.
	$Ca(OH)_2 + CO_2 \rightarrow \dots + \dots$	(2)
		(2)
()	t the agreement are now. Mylant others todays at leaves on more very tould	
(e)	CO ₂ is present in air. What effect does it have on rain water?	

7. (Crude oil is a mixture of hydrocarbons.	I
	a) Which two elements are present in the compounds in crude oil?	
	and	(2)
(b) Crude oil is separated into fractions by heating and passing the vapour in fractionating column. Explain why the fractions separate in the column.	
		(2)
(c) Two of the fractions are gasoline and bitumen. Give one use of each.	
	Use of gasoline	
	Use of bitumen	
	Ose of bitumen	(2)
(d) Name two fractions formed in the fractional distillation of crude oil, other gasoline and bitumen.	than
	1	
	2	(2)
(e) (i) Identify the two products of complete combustion of hydrocarbons.	
	1	
	2	(2)
	(ii) Explain why the incomplete combustion of hydrocarbons is harmful to hur	mans.
		(2)
	(Total 12 ma	arks)
	TOTAL FOR SECTION A: 55 MA	RKS

SECTION B

8. Hydrogen peroxide decomposes into water and oxygen.


$$2H_2O_2 \rightarrow 2H_2O + O_2$$

The reaction is very slow but becomes faster if manganese(IV) oxide is added. The manganese(IV) oxide does not get used up during the reaction.

(a) What is the role of the manganese(IV) oxide in this reaction?

(1

(b) The graph shows how the volume of oxygen collected changed with time when 1 g of small lumps of manganese(IV) oxide were added to 10 cm³ of hydrogen peroxide.

Sketch on the axes above the results obtained when

(i) the experiment is repeated using 1 g of powdered manganese(IV) oxide. Label this sketch **A**.

(2)

(ii) the same volume of hydrogen peroxide is used but 5 cm³ of water is added to it before the manganese(IV) oxide is added.

Label this sketch **B**.

(2)

(2)

(c) Describe a test for oxygen gas.

Test

Result

Q8

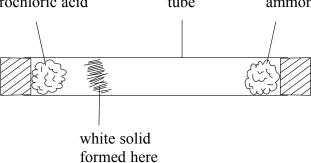
(Total 7 marks)

9. The decomposition of ammonium chloride is a reversible reaction.

$$NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$$

(a) How is this reaction made to go in the **forward** direction?

(1)


(b) Concentrated hydrochloric acid gives off hydrogen chloride gas. Concentrated ammonia solution gives off ammonia gas.

An experiment is set up.

cotton wool
soaked in concentrated glass
hydrochloric acid tube ammonia solution

After a few minutes a white solid forms inside the tube. The solid forms when ammonia gas reacts with hydrogen chloride gas.

cotton wool cotton wool soaked in concentrated glass soaked in concentrated hydrochloric acid tube ammonia solution

(i) Name the process by which the ammonia and hydrogen chloride particles move inside the tube.

(1)

(ii) What is the white solid that forms inside the tube?

			(1)
(iv) The experiment is repeated winside of the tube.	vith a strip of dar	mp red litmus paper placed alon	g the
cotton wool		cotton wool	
soaked in concentrated	glass tube	soaked in concentrated	
hydrochloric acid	tube 	ammonia solution	
	-		
Λ	B	the state of the s	
A	Б	damp red	
		litmus paper	
A		B when the white solid forms.	
A			
A			(2)

Leave
blank

10. The alkenes are a homologous series of unsaturated hydrocarbons.

(a)	(i)	Tick two	boxes	that	are	correct	statements	about	members	of	an	homologor	us
		series.											

They have similar chemical properties

They have the same displayed formula

They have the same general formula

They have the same physical properties

They have the same relative formula masses

(2)

(ii) What is meant by the term **unsaturated**?

	(1)

(1)

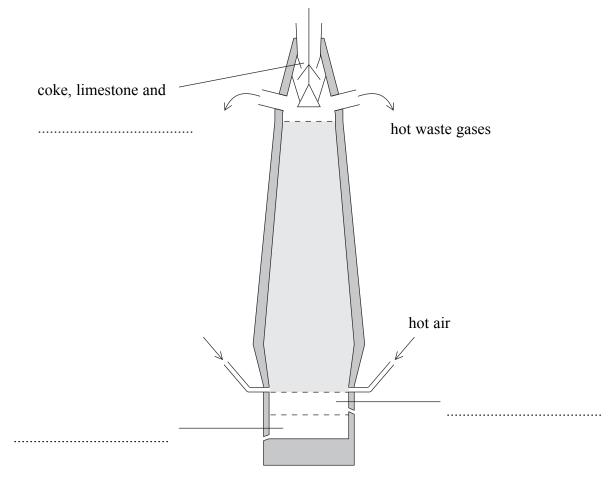
(b) Alkenes react with bromine water. Ethene is the simplest alkene.

(i) Bromine water is added to ethene. State the starting and finishing colours of the reaction mixture.

Colour at start

Colour at finish **(2)**

(ii) Complete the equation by drawing the displayed formula of the product.


$$Br - Br + C = C \longrightarrow H$$

(1)

		Leave
(c)	Isomers are compounds that have the same molecular formula but different displayed formulae.	blank
	Draw the displayed formulae of \boldsymbol{two} isomers that have the molecular formula C_4H_8 .	
	(2)	Q10
	(Total 8 marks)	

- 11. Iron is extracted from iron ore in a blast furnace.
 - (a) Label the diagram of the blast furnace. Use only words from the box. Each word may be used once, more than once or not at all.

bauxite	cryolite	haematite
molten iron	sand	slag

(3)

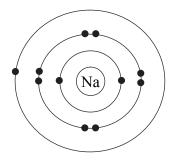
- (b) Coke is mainly carbon which burns in the oxygen in the hot air.
 - (i) Write a chemical equation for the reaction.

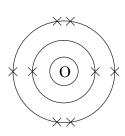
(1)

(ii) Why is this reaction important in the blast furnace?

.....

(1)


16


Limestone is mainly calcium carbonate. In the blast furnace it decomposes to gi carbon dioxide and calcium oxide.
(i) Write a chemical equation for the reaction.
(ii) Calcium oxide is a base. It removes silicon dioxide impurities. Explain how to calcium oxide removes the silicon dioxide.
Iron is produced by the reduction of iron(III) oxide. An equation for the reaction
$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- · · · · · · · · · · · · · · · · · · ·
Why is this reaction described as the reduction of iron(III) oxide?
Why is this reaction described as the reduction of iron(III) oxide?
Why is this reaction described as the reduction of iron(III) oxide?
Why is this reaction described as the reduction of iron(III) oxide? Aluminium is another important metal. (i) Unlike iron, aluminium cannot be extracted from its ore using a blast furnace.
Why is this reaction described as the reduction of iron(III) oxide? Aluminium is another important metal. (i) Unlike iron, aluminium cannot be extracted from its ore using a blast furnace. Explain why.
Why is this reaction described as the reduction of iron(III) oxide? Aluminium is another important metal. (i) Unlike iron, aluminium cannot be extracted from its ore using a blast furnace. Explain why. (ii) State one large scale use of aluminium. Give a property of aluminium on which
Why is this reaction described as the reduction of iron(III) oxide? Aluminium is another important metal. (i) Unlike iron, aluminium cannot be extracted from its ore using a blast furnace. Explain why. (ii) State one large scale use of aluminium. Give a property of aluminium on whithis use depends. Use
Why is this reaction described as the reduction of iron(III) oxide? Aluminium is another important metal. (i) Unlike iron, aluminium cannot be extracted from its ore using a blast furnace. Explain why. (ii) State one large scale use of aluminium. Give a property of aluminium on whithis use depends. Use

12.	Soc	lium	is a very reactive metal. It floats on water and reacts rapidly with water.
			piece of sodium is placed in a trough of water. A reaction takes place and n gas is given off.
	(a)	(i)	Give two observations, other than the sodium floating, that you could make during the reaction.
			1
			2(2)
		(ii)	Write a word equation for the reaction.
			(1)
		(iii)	Universal indicator is added to the water in the trough. State what colour it turns and explain why.
			Colour
			Explanation
			(2)
	(b)		iece of platinum wire is dipped into the solution in the trough and then held in a ring Bunsen flame. The Bunsen flame becomes coloured.
		(i)	What colour does the flame become?
			(1)
		(ii)	What name is given to this method of identification?
			(1)

Leave	
blank	

- (c) A piece of sodium is heated in a Bunsen flame. The sodium catches fire and reacts with the oxygen in the air. The product is sodium oxide.
 - (i) The diagrams show the electron arrangement in an atom of sodium and an atom of oxygen.

Sodium oxide contains ionic bonds. Describ when sodium reacts with oxygen.	be what happens, in terms of electrons,
	(3)

(ii) Draw circles round the symbols that represent the two ions produced.

 Na^{2+} Na^{+} Na^{-} O^{2-}

 Na^{2-}

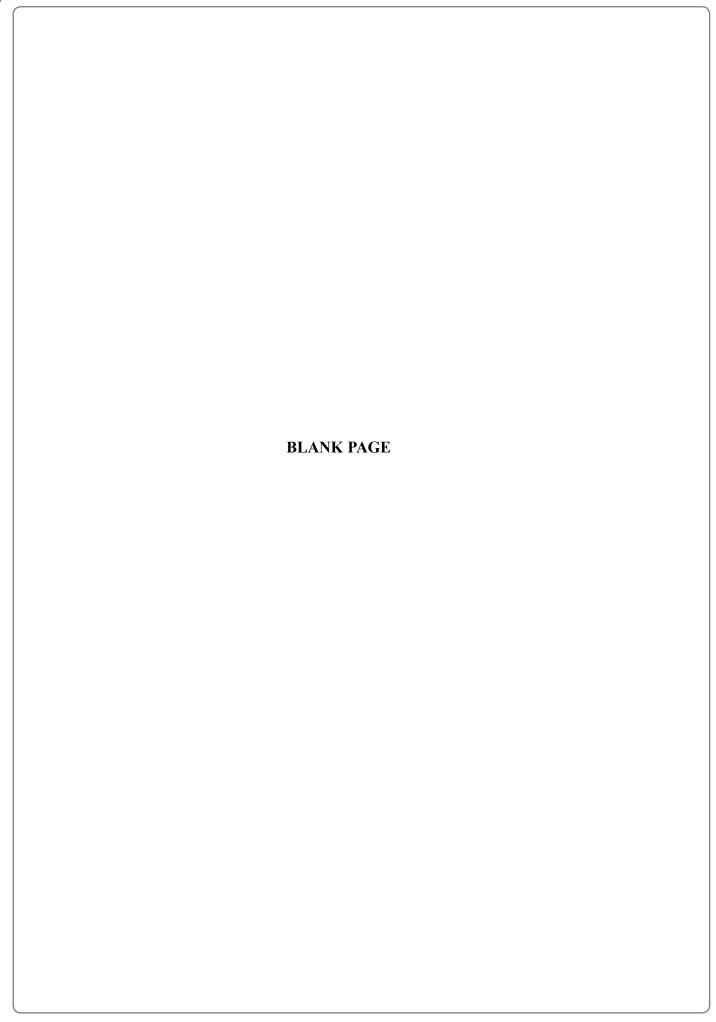
 O_2^-

 O^{-}

(2)

Q12

(Total 12 marks)


TOTAL FOR SECTION B: 45 MARKS

TOTAL FOR PAPER: 100 MARKS

 O^{2+}

END

