	Centre Number	Candidate Number
Candidate Name		

International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE CHEMISTRY 0620/3

PAPER 3

OCTOBER/NOVEMBER SESSION 2001

1 hour 15 minutes

Candidates answer on the question paper. No additional materials are required.

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12.

FOR EXAMI	INER'S USE
1	
2	
3	
4	
5	
TOTAL	

(a)	The	poisonous gas, carbon monoxide, is emitted by vehicle exhausts.			
	(i) How is this gas formed?				
		[2]			
	(ii)	Explain how a catalytic converter reduces the emission of this gas.			
		[2]			
	(iii)	The following reaction is used to detect carbon monoxide.			
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
		What type of chemical reaction is the change Pd^{2+} to Pd ? Give a reason for your answer.			
		[2]			
	(iv)	Ethene will also give the above reaction. Describe another chemical test for this gas.			
		[2]			
(b)		oon monoxide is used to purify nickel. Nickel reacts with carbon monoxide to form a eous compound.			
		$Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$ forward reaction is exothermic			
	(i)	What reaction condition will favour the back reaction and reform nickel metal? Explain your choice.			
		[2]			
	(ii)	The main impurity in the nickel is copper. What technique is used to purify copper after it has been separated from the nickel?			
		[1]			

(c) Pure nickel is used to catalyse the reduction of unsaturated oils to saturated fats.

(i)	What is meant by the terms saturated and unsaturated?
	[0]
(ii)	Name the functional group in fats.
(iii)	How can a soap be made from a fat?
	[2]

2 (a) (i) Describe how oxygen is separated from air.

.....

[2]

(ii) Give one use of oxygen.

.....[1]

(b) When a green plant is exposed to bright light it photosynthesises and forms oxygen. The rate at which oxygen is formed was measured at 25 °C. The intensity of the light is changed and the new rate measured. The results of experiments of this type are shown on the graph below.

(i) Write a word equation for the reaction that produces oxygen.

.....[1]

(ii) Name the catalyst for photosynthesis.

.....[1]

(iii) What can be deduced from this experiment about the relationship between photosynthesis and light?

.....

.....[2]

(iv) The experiment was repeated at 30 °C. Predict the effect this would have on the rate of reaction and sketch the new graph on the same axes. [2]

	(v)	Give another example of a reaction that is influenced by light. Describe one important application of this reaction.
		reaction
		application[3]
(c)	оху	assium chlorate, which has a formula of the type, $KClO_n$, decomposes to form gen. 2.45 g of the chlorate produced 1.49 g of potassium chloride and 0.72 dm ³ of gen at r.t.p. Find the value of n.
		$KClO_n \rightarrow KCl + \frac{n}{2}O_2$
		Mass of one mole of $KCl = 74.5 g$
		Number of moles of KC <i>l</i> formed =
		Number of moles of oxygen molecules formed =
		Number of moles of oxygen atoms =
		Mole ratio KCl:O is
		n = [4]

3 Propane is an alkane. It has the structural formula:

(a) The equation for the complete combustion of propane is given below. Insert the two missing volumes.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$
 volume of gas/cm³ 15 [2]

- (b) Propane reacts with chlorine to form two chloropropanes with the formula C₃H₇Cl.
 (i) Write an equation for this reaction.
 - (ii) What type of reaction is this?
- (c) The two chloropropanes react with sodium hydroxide to form different alcohols.
 - (i) These alcohols are isomers. Using the propanols as an example explain the term isomer.

 [3]
 - (ii) Fractional distillation can separate the two propanols. Suggest a reason why this method is effective.
 -[1]
 - (iii) Oxygen can oxidise propanol to propanoic acid. Name another reagent that will bring about this reaction.
 -[1]

	(IV)	formula of an ester.
		name
		structural formula
		[3]
(d)	Pro	pene can be made by heating propane and sulphur.
	(i)	Outline another method of making alkenes from alkanes.
		[2]
	(ii)	Outline how propanol could be made from propene.
		[2]

	(i)	Suggest a way of changing calamine into zinc oxide.
		[
	(ii)	Describe how zinc is extracted from zinc blende.
(b)		coxide is used to make aqueous zinc chloride. This can be used to preserve woo cribe how this solution could be made.
(c)	Zinc	is used to make alloys.
	(i)	Name an alloy that contains zinc.
	(ii)	What is the other metal in this alloy?
(d)	Ano	ther use of zinc is galvanising. When the zinc layer is broken, the steel is exposed
()	70	
		exposed steel does thin layer of not rust zinc
		steel
	Exn	lain why the exposed steel does not rust.
	$-\Lambda \nu$	idin why the expeded steel does not rust.
	•	

(e) The diagram below represents a simple cell.

(i) Write an ionic equation for the reaction that occurs at the zinc electrode.

(ii) How could the voltage of the cell be increased?

(f) A different type of cell is drawn below.

(i) The pH of the solution increases. Give the name of the ion formed.

F 4 1	í
111	1
 г.л	i

(ii) Complete the equation that represents the formation of this ion.

$$O_2 + \dots H_2O + \dots \to \dots$$
 [2]

5 (a) In the USA, sulphur is obtained from underground deposits. It burns to form sulphur dioxide. This is used in paper making, to preserve food and in the manufacture of sulphuric acid.

(i)	Why is sulphur dioxide needed in paper making?	

.....[1]

- (ii) How does sulphur dioxide preserve food?
- **(b)** The diagram shows a possible arrangement of the valency electrons in a molecule of sulphur dioxide.

O represents an electron from an oxygen atom X represents an electron from a sulphur atom

(i)	What type of covalent bond is labelled bond 1 ?	
		.[1]
(ii)	What is unusual about the covalent bond labelled bond 2 ?	
		.[1]

(c) Sulphur reacts violently with magnesium to form the ionic compound magnesium sulphide. Draw a diagram that shows the arrangement of the valency electrons in this compound.

Use O to represent an electron from a magnesium atom. Use X to represent an electron from a sulphur atom.

[3]

(d)	Sul	ulphuric acid is a typical strong acid.			
	(i)	Explain the term strong acid.			
		[2]			
	(ii)	Write a word equation for the reaction between zinc carbonate and sulphuric acid.			
		[2]			
	(iii)	Write an equation for the reaction between sodium hydroxide and sulphuric acid.			
		[2]			
	(iv)	Write an ionic equation for the reaction between magnesium and sulphuric acid.			

DATA SHEET
The Periodic Table of the Elements

		0	He lium	20 Neon 10 40 Ar Argon	84 Krypton 36 131 Xenon	Rn 86 Radon	175 Luetium 71 Ltawrencium 103
		\		19 Fluorine 35.5 C1 Chlorine	Br Br Bromine 127 I	Astatine 85	Yb Yterbium 70 Nobelium
		 		16 O O Oxygen 32 Sulphur		Po	169 Tm Thullium 69 Md Mendelevium 101
		>		Nitrogen 8 8 31 Phosphorus 15	AS Arsenic 33 Arsenic 122 Sb Antimony		Erbium 68 Femium N
		2		Carbon Carbon Silicon	73 Ge srmanlum 119 Sn	207 507 8	Homium 67 6 ES EINsteinium 99 11
		=		Boron 27 Aluminium	Gaa Sallium 115 In	7 204 Thallium 81	Dy Dysprosium 66 Cf Californium 98
10				ا م	65 Zn Zinc 30 112 Cd Cadmium		159 Terbium 65 BK Berkelium 97
=Iement					Cu Copper 108 Ag	Au (97 (97 (97 (97 (97 (97 (97 (97 (97 (97	Gadolinium 64 Cm Curium 96
ne Periodic Lable of the Elements	dn				Nickel 28 Pd		Europium 63 Am Americium 95
alc I able	Group				Co Cobalt 103 Rhodium	192 IF	Smarium 62 Pu Plutonium 94
le Perio			1 Hydrogen		56 Fe Iron 26 101 Ru Rutenium	190 OS Osmium 76	Promethium 61 Np Neptunium 93
_				ı	Manganese 25 TC Tc		Nd Neodymium 60 238 Uranium 92
					Chromium Chromium 24 96 Mo		Praseodymium 59 Pa Praseodymium 59 Protectinium 91
					V Vanadium 23 93 Nb Niobium	Ta antalum	140 Cerium 58 232 Thorium 90
					48 Titanium 22 91 Sirronium	178 Hf Hathium 72	iic mass ool iic) number
					Scandium 21 89 Yttrium	139 La nthanum * AC	89
		=		Beryllium 4 24 Mg Magnesium 12	Calcium 20 88 Srootium	137 137 137 137 143 156 173 173 173 173 173 173 173 17	*58-71 Lanthanoid series †90-103 Actinoid series a
		_		7 Lithium 3 23 Na Sodium 11	0620/3/O/N/01	CS CS aesium	*58-71 Lé †90-103 Key

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).