	Centre Number	Candidate Number
Candidate Name		

International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE CHEMISTRY 0620/2

PAPER 2

OCTOBER/NOVEMBER SESSION 2001

1 hour

Candidates answer on the question paper. No additional materials are required.

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table in printed on page 16.

FOR EXAMI	NER'S USE
1	
2	
3	
4	
5	
6	
7	
TOTAL	

1

Sor	ne je	ne jewellery is made from an alloy of gold and nickel.					
Nic	ckel is a transition element.						
(a)	Sta	ate two properties of transition metals that are not shown by other metals.					
	1						
	2						[2]
(b)	Sw	eat from the	skin is slightly a	cidic and react	s with jewellery	containing nickel.	
	(i)	Suggest h	ow you could find	d out the pH of	the sweat on the	e surface of your	skin.
							[2]
	(ii)	Which one	of the values re	presents a pH	which is slightly	acidic.	
		Put a ring	around the corre	ct answer.			
		pH 2	pH 6	pH 7	pH 8	pH 13	[1]
	(iii)	Nickel ions	s are formed whe	en nickel reacts	with sweat.		
		These ions	s cause the skin	to become ver	y sensitive.		
		State what	t is meant by the	term ion.			
							[1]
	(iv)	Complete	the equation to s	how the forma	tion of nickel ion	s from nickel.	
			Ni	\rightarrow Ni $^{2+}$ + .	e⁻		[1]

(c) The table shows the volumes of gas produced in one minute when different metals reacted with hydrochloric acid. All other conditions remained the same in the experiment.

metal	volume of gas / cm ³
iron	8
magnesium	56
nickel	3
zinc	14

Put these metals in the correct order of reactivity.

	most reactive			
	least reactive		[1]
(d)	Alloys of zinc are used for making zip-	fasteners.		
	Describe a test for zinc ions			
	test			

.....[3]

0620/2 Nov01 [Turn over

2 The table shows some properties of five substances, A, B, C, D and E.

substance	melting point /°C	boiling point /°C	conducts electricity in the solid state	conducts electricity when molten
А	-7	59	no	no
В	801	1413	no	yes
С	1083	2567	yes	yes
D	-189	-186	no	no
E	1610	2230	no	no

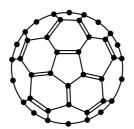
(a)	Wh	nich one of the substances A to E is a metal?	
(b)	Wh	nich one of the substances A to E has a giant structure of ions?	
(c)		nich one of the substances A to E has the lowest melting point?	
			[1]
(d)	(i)	Which one of the substances A to E is a gas at room temperature?	
			[1]
	(ii)	Describe the arrangement and movement of the particles in a gas.	
		Arrangement	
		Movement	[2]
(e)	Two	o of the substances in the table are compounds.	
	Exp	plain what is meant by the term compound.	
	••••		
			[21

(f) The table below gives information about the electron arrangement of a sodium atom and a chlorine atom.

atom	electron arrangement
sodium	2.8.1
chlorine	2.8.7

(i)	Sodium chloride, NaCl, has an ionic giant structure.
	Describe the changes in electron arrangement that take place when sodium chloride is formed from sodium and chlorine atoms.
	[4]
(ii)	Calculate the relative formula mass of sodium chloride.
	Use the Periodic Table to help you.

[2]


3

Use	the	Peri	iodic Table to help you answer these questions.	
(a)	Tell	uriur	m, Te, is in Group VI of the Periodic Table.	
	In v	vhich	n Period is tellurium?	
				[1]
(b)	Wh	at de	etermines the order of the elements in the Periodic Table?	
				[1]
(c)	Hov	v ma	any electrons does an atom of tellurium have in its outer shell?	
				[1]
(d)	Sta	te th	ne name of a metallic element which is in the same Period as tellurium.	
				[1]
(e)	Tell	uriur	m reacts with excess chlorine to form tellurium(IV) chloride, TeC l_{λ} .	
	(i)		lorine is a diatomic molecule.	
	()	Ext	plain what is meant by	
		1	diatomic,	
		2.	molecule	
		۷.		
				[S]
	(ii)		mplete the following equation for the reaction between tellurium and orine.	d excess
			$Te \;\; + \;\; \; C\mathit{l}_2 \;\; \rightarrow \;\; TeC\mathit{l}_4$	[1]

Etha	nol, C ₂ H ₅ OH, is formed when yeast ferments a solution of glucose in water.	
(a)	State the name of the gas given off during fermentation.	
(b)	Fermentation is caused by the action of enzymes in the yeast. Explain the meaning of the term <i>enzyme</i> .	[1]
(c)	The boiling point of ethanol is 78 °C. Explain how ethanol can be separated from water.	[2]
(d)	Draw the structure of ethanol to show how the atoms and bonds are arranged.	
(e)	Ethanol can also be produced by the following reaction:	[1]
	$ \begin{array}{ccc} & & & & \\ \text{C}_2\text{H}_4 & + & \text{H}_2\text{O} & \rightarrow & \text{C}_2\text{H}_5\text{OH} \\ & & \text{steam} & & \text{ethanol} \end{array} $	
	(i) Choose a word from the list below which best describes this reaction.Put a ring around the correct answer.	
	addition combustion neutralisation polymerisation	[1]
	(ii) What is the function of the catalyst?	[4]
(iii) State the name of the reactant, C_2H_4 .	[1]
(iv) The other reactant is steam. The steam is made by boiling water. What is the boiling point of water?	[1]
	0620/2 Nov01	[2] [Turn o v

(f)	State one use of ethanol.	
	[1]	
(g)	State the names of the products formed when ethanol burns.	
	[2]	

5 Buckminsterfullerene is a form of carbon which was discovered in 1985. It is shaped like a football and has the formula C_{60} . Its structure is shown below.

carbon atom

(a) Is buckminsterfullerene a compound or an element?

Give a reason for your answer.

.....

.....[1]

(b) Choose a word from the list below which best describes the bonding shown on the diagram of buckminsterfullerene.

Put a ring around the correct answer.

covalent ionic metallic [1]

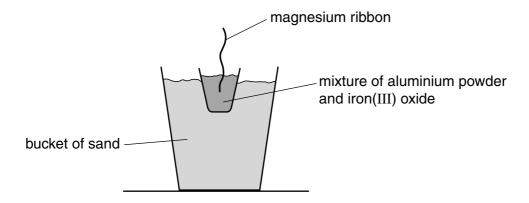
(c) Buckminsterfullerene reacts with diphenyldiazomethane (DDM).

The structure of DDM is shown below.

(i) State the total number of atoms in one molecule of DDM.

.....[1]

0620/2 Nov01


(ii) Write down the molecular formula of DDM.

	(111)	when buckminsterfullerene reacts with DDM, hitrogen gas, N ₂ , is given oil.	
		State the total number of protons in one molecule of nitrogen.	
			[1]
			[1]
(d)	Buc	kminsterfullerene is one of the three forms of solid carbon.	
	Stat	te the names of the two other forms of carbon and give a use for each.	
	nam	ne of first form	
	use	of first form	
	nam	ne of second form	
	use	of second form	
			[4]
(e)	(i)	Complete the word equation for the incomplete combustion of carbon.	
		carbon + oxygen \rightarrow	[1]
	(ii)	Write down the chemical formula of the product in this reaction.	
			[1]

6 In the 'thermit' reaction, aluminium powder reacts violently with iron(III) oxide.

A magnesium ribbon is lit to start the reaction.

The reaction gives out a great deal of heat.

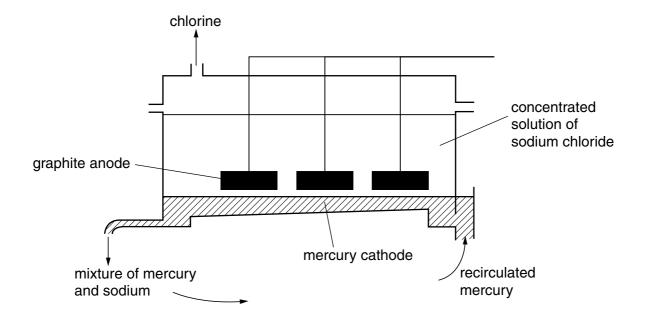
The equation for the reaction is:

$$2 \text{A} \textit{l}(\text{s}) \quad + \quad \text{Fe}_2 \text{O}_3(\text{s}) \quad \rightarrow \quad \text{A} \textit{l}_2 \text{O}_3(\text{s}) \quad + \quad 2 \text{Fe}(\text{s})$$

(a) Complete the following sentence about the 'thermit' reaction using words from the list.

added electrolysed neutralised oxidised reduced

In the 'thermit' reaction, the aluminium is to aluminium oxide and the iron(III) oxide is to iron. [2]


0620/2 Nov01 [Turn over

(b)	Aluminium oxide which has been heated to a high temperature is called fused aluminium oxide.						
	Fus	ed aluminium oxide does not react with hydrochloric acid.					
	Iron	reacts with hydrochloric acid.					
	(i)	What would you observe when hydrochloric acid is added to a mixture of fused aluminium oxide and iron?					
	(ii)	After reaction with hydrochloric acid, the mixture contains fused aluminium oxide solid and a solution of iron(II) chloride.					
		Describe with the help of a labelled diagram, how you would separate the aluminium oxide from the iron(II) chloride solution.					
(c)	The	[4] magnesium ribbon used to start the 'thermit' reaction burns in oxygen and gives out					
(0)	hea						
	Wha	at term describes a reaction that gives out heat?					
		[1]					
(d)		n oxyacetylene torch, oxygen is used with acetylene to produce a flame with a perature of about 3000 °C.					
	Stat	e one use of this flame.					
		[1]					

[1]

7 Chlorine is produced by the electrolysis of concentrated sodium chloride solution.

An electrolysis cell for producing chlorine is shown below.

(a) Seawater is a source of sodium chloride.

A sample of seawater had the following composition:

sodium chloride	5.6 g
magnesium chloride	1.4 g
magnesium sulphate	1.2 g
water	191.8 g

Calculate the percentage of sodium chloride in this sample of seawater.

(b) The solution of sodium chloride used for electrolysis is about ten times more concentrated than in seawater.

State how you could increase the concentration of the salts in seawater.

[1]

(c) What happens to the concentration of the sodium chloride as electrolysis takes place?

[1]

(d) At which electrode is chlorine produced during the electrolysis of concentrated sodium chloride solution?

.....[1]

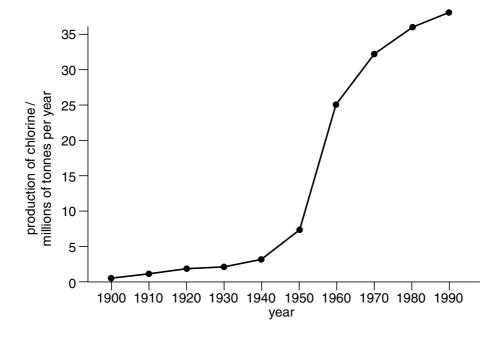
(e) State one property that graphite must have if it is to be used as an electrode.

_____[1]

(f) What property of mercury allows it to be recirculated easily?

_____[1]

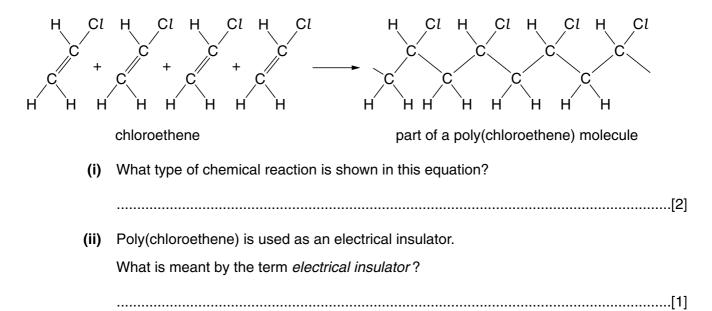
(g) Sodium is also produced during this electrolysis.


The sodium dissolves in the mercury.

The mixture of sodium and mercury then reacts with water.

Complete the word equation for the reaction of sodium with water.

sodium + water \rightarrow [2]


(h) The graph shows the world production of chlorine during the 20th century.

Over which ten year period did chlorine production increase most rapidly?

.....[1]

(i) Chloroethene molecules join together to form poly(chloroethene).

DATA SHEET
The Periodic Table of the Elements

						_				_
		0	4 He lium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium
		=		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb
		5		16 Oxygen	32 S Sulphur 16	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm
		^		14 N Nitrogen 7	31 P Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er
Elements		≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn ⊤n	207 Pb Lead		165 H
		=		11 Boron 5	27 A1 Aluminium 13		115 In Indium	204 T 1 Thallium		162 Dy
	Group					65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tob
						64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd
e or the						59 Nicke l 28	106 Pd Palladium 46	195 P Platinum		152 Eu
The Periodic Lable of the Elements						59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		150 Sm
			1 T Hydrogen 1			56 Fe Iron	Du Ruthenium 44	190 Os Osmium 76		Pm
				J		Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Na
						Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Presendanim
						51 V Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140 Ce
						48 Ti Titanium	2r Zirconium 40	178 Hf Hafinium		
						45 Sc Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	series eries
		=		Be Beryllium	24 Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series †90-103 Actinoid series
		_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 Le †90-103 ,
•						0620/2	Nov01			-

175 Lu Lutetium	Lr Lawrencium 103
173 Yb Ytterbium	
169 Tm Thulium	Mendelevium 101
167 Er Erbium	Fm Fermium 100
165 Ho Holmium	6
162 Dy Dysprosium	Californium
159 Tb Terbium	Bk Berkelium 97
157 Gd Gadolinium	Cantium Outline 96
152 Eu Europium	Am Americium 95
Samarium	Pu Plutonium 94
Pm Promethium	Neptunium
Neodymium	238 U Uranium
Pr Praseodymium	Pa Protactinium 91
140 Ce Cerium	232 Tho Thorium

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic mass **X** = atomic symbol

а **×**

Key