Centre No.				Pape	r Refer	ence			Surname		Initia	l(s)
Candidate No.		4	3	2	5	/	2	H	Signature			
	Paper Reference(s) 4325/2H		7 v	o m	in	o ti	ion	\C.	IGCSE	Exami	ner's us	e only
	Biology Paper 2H		٧ X	aII.		au	IOII	15			Question	
	High	er		Ci	er	•					1	
	Thursday Time: 2 h		Vov	em	ber	20	07 -	- N	Iorning		3 4	
	Materials requir	ed for e	examir	1ation	. Ito		cluded	with	question papers		5 6 7	

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper. Answer **ALL** the questions in the spaces provided in this question paper.

Show all the steps in any calculations and state the units.

Calculators may be used.

Information for Candidates

The total mark for this paper is 120. The marks for parts of questions are shown in round brackets: e.g. (2).

There are 28 pages in this question paper. All blank pages are indicated.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. @2007 Edexcel Limited.

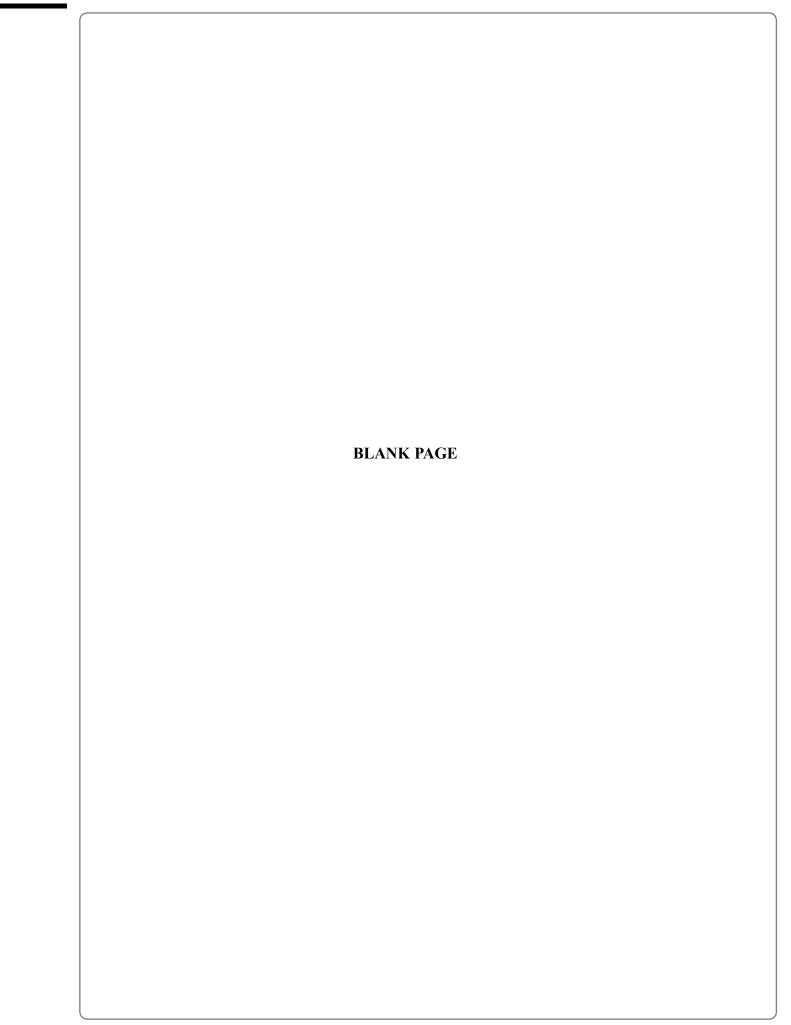
 $\begin{array}{c} {\rm Printer's\ Log.\ No.} \\ H29166A \\ {\rm W850/4325/57570} \\ {\rm 7/7/6/2/1} \end{array}$

8

9

10

11


12

13

14

15

16

	Answer ALL the question	s. Write your answers in the spaces provided.	Leave blank
1.		characteristics in common. The table gives descriptions of	
	Complete the table by filling in	the gaps.	
	Characteristic	Description	
	moving	not staying in the same place	
	excreting		
		increasing in size and mass	
		getting energy from food	
	reproducing		Q1
		(Total 4 marks)	

2.	(a)	Substances move into and out of cells by different methods.
-----------	-----	---

Three methods, A, B and C, are described below.

- A movement of substances against a concentration gradient
- **B** movement of water from a dilute solution to a more concentrated solution through a partially permeable membrane
- C movement of substances down a concentration gradient

Complete the table by putting the correct letter for each method.

Method	Letter of description
diffusion	
osmosis	
active transport	

(3)

- (b) Complete the sentences below by writing a correct word or phrase in the blank spaces.
 - (i) An example of diffusion in the lung of a mammal involves a substance called oxygen, which moves from the to the

(2)

(ii) An example of osmosis in the kidney of a mammal involves a substance called, which moves from the nephron to the

(2)

(iii) An example of active transport in a flowering plant involves uptake of a mineral salt, which moves from the to the in a root hair cell.

(2)

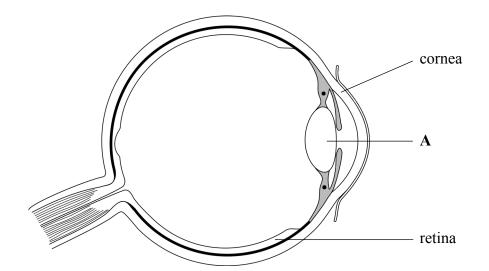
H 2 9 1 6 6 A 0 4 2 8

Leave blank (c) The graphs show the effect of changing the temperature on the rate of movement of substances into cells. rate rate temperature temperature B \mathbf{A} rate rate temperature temperature \mathbf{C} D (i) Which graph shows the effect of temperature on diffusion? **(1)** (ii) Which graph shows the effect of temperature on active transport? **(1)** $\mathbf{Q2}$ (Total 11 marks)

ha	bitats.
Fr	seaweed → periwinkle → oystercatcher (a mollusc) (a bird)
Fr	om the edge of a field
	blackberry \rightarrow bank vole \rightarrow tawny owl (a fruit) (a mammal) (a bird)
(a)	(i) Name one primary consumer in these food chains.
	(1)
	(ii) What is the original energy source for these food chains?
	(1)
(b)	The following food chains come from a woodland environment.
	leaf litter \rightarrow earthworm \rightarrow blackbird \rightarrow sparrow hawk
	dead mouse \rightarrow blowfly larvae \rightarrow common frog \rightarrow grass snake
	Other than the names of the organisms, give two ways in which these food chains differ from the examples in part (a).
	1

(2)

(c) (i)	Name two groups of organisms that can act as decomposers in food chains.	Le bla
	2(2)	
(ii)	Describe the role of decomposers in the carbon cycle.	
	(3)	Q3
	(Total 9 marks)	


H 2 9 1 6 6 A 0 7 2 8

7

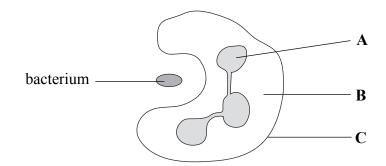
Turn over

(2)

4. The diagram shows a section of the human eye.

(a) Name the part labelled A.

(1)


(b) Some people have a rare genetic condition that makes the cornea become cloudy. As a result they find it difficult to see clearly and may become blind.

(i) Suggest why a cloudy cornea makes it difficult for a person to see clearly.

				Leave blank
(ii)	The condition for cloudy cornea is allele, n , results in a clear cornea.	caused by a dominant	allele N. The recessive	olalik
	A couple plan to have children. The mother is homozygous recessive		us for cloudy cornea and	
	Complete the genetic diagram to stand the possible genotypes and produminant allele and n for the recession.	henotypes of their cl		
	Fathe	er	Mother	
	Genotypes of parents	and		
	Gametes			
	Genotypes of children			
	Phenotypes of children		(4)	04
			(Total 7 marks)	

5. The diagram shows a white blood cell ingesting a bacterium.

(a) Complete the table to give the names and functions of the parts labelled A, B and C.

Letter	Name	Function
A		
В		
C		

(6)

(b) Describe what happens to the bacterium after it has been ingested by the white blood cell.

(c) Normal blood contains 7000 white blood cells per mm³. A person with a mild infection had blood with 10 500 white blood cells per mm³. Calculate the percentage increase in white blood cells. Show your working.

Answer

(2)

Q5

(2)

(Total 10 marks)

6. The technique of selective breeding can be used to produce a crop of tomato plants that flower early.The table shows the steps taken to breed early-flowering tomato plants.Complete the table by using numbers to show the correct order of the steps.

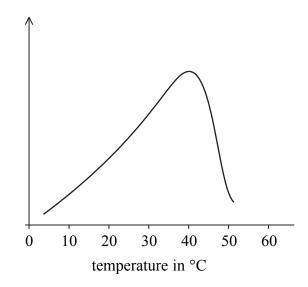
Step	Order of step
select early-flowering offspring plants	
allow seeds from early-flowering plants to grow	
select early-flowering plants	1
grow early-flowering offspring plants	5
repeat the process for several generations	
collect seeds from early-flowering plants	

(Total 4 marks)

Q6

Leave blank

1	Explain how growing crops in glasshouses can alter the yield of a crop.	
_	(Total 5 marks)	


- **8.** Some large molecules are made from smaller basic units.
 - (a) The table shows some important large molecules in living organisms. Complete the table to show the missing large molecule and the smaller basic units.

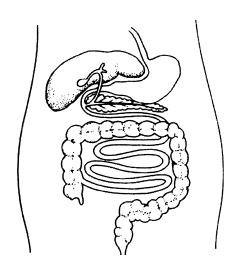
Large molecule	Smaller basic units
starch	
protein	
	fatty acids and glycerol

(3)

(b) Protein is broken down into its smaller units by a protease enzyme. The graph shows how the activity of a protease is affected by temperature.

rate of reaction in arbitrary units

Describe how the rate of reaction of this protease varies with temperature.


•••••	• • • • • • • • • • • • • • • • • • • •	

(2) **Q8**

(Total 5 marks)

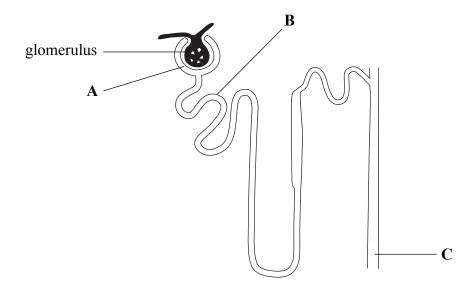
9. The diagram shows part of the human digestive system.

Leave blank

(a) On the diagram, use an arrow and the letter L to show the large intestine.

(1)

(b) On the diagram, use an arrow and the letter ${\bf B}$ to show where bile is made. (1)


(c) Give two functions of bile.

1	
2	
	(2)
	()

. ,	The products of digestion are absorbed by villi in the small intestine. Explain how the structure of villi helps absorption of these products.	
	(2)	
	(Total 6 marks)	_

10. The diagram shows a nephron from a human kidney.

(a) (i) Name the parts of the nephron labelled A, B and C.

A	
В	
C	
	(3)

(ii) Ultrafiltration occurs between the glomerulus and part $\bf A$. Explain what is meant by the term ultrafiltration.

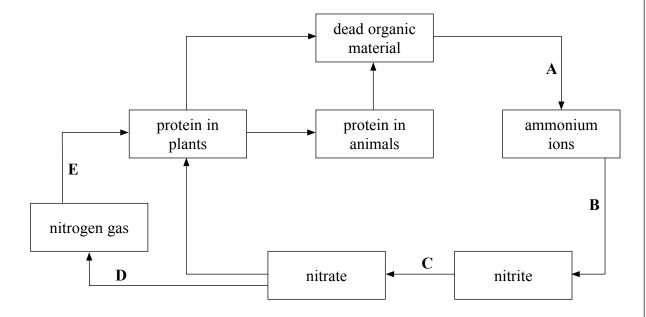
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		(2)
		(2)
		()

16

	Concentration of t	Concentration of urea in g per 100 cm ³	
	in part A	in part C	
	0.03	2.00	
(i) How part	w many times more concentrate A?	rated is the urea in p	part C compared with
			(1)
(ii) Sug	gest why the concentration of	urea is greater in part C	C than in part A .
			(1)
	on of urine and are known as on of urine.	diarettes. Suggest nev	
•••••			
			(3)
			(3) (Total 10 marks)
			(3) (Total 10 marks)

11. The diagram shows how the levels of oestrogen and progesterone vary in the menstrual cycle.	Leave blank
hormone levels 0 14 28 day of cycle	
(a) On the diagram, show how the line for progesterone would change if the woman became pregnant. (1)	
(b) Fill in the missing words in the sentences below.	
The fusion of a male and female gamete is known as fertilisation, which produces	
a single cell called a	
an, which is protected by fluid in	
the uterus. (3)	
(c) Which type of reproduction involves gametes?	
(1)	Q11
(Total 5 marks)	

12. Many scientists from the British Antarctic Survey work in the Antarctic. Sometimes the temperature can fall as low as -50 °C. Scientists who live there need lots of energy to work under such cold conditions.



Q12

(2)

(Total 7 marks)

13. The diagram shows some of the processes in the nitrogen cycle.

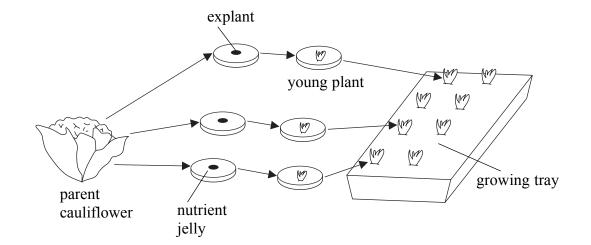
Bacteria are involved in the stages labelled A, B, C, D and E.

- (a) Give the letter of **one** stage that involves each of the following.

 nitrifying bacteria

 denitrifying bacteria

 nitrogen-fixing bacteria

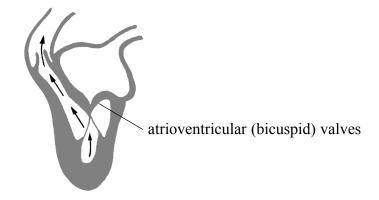

 (3)
- (b) Fungi are also involved in the nitrogen cycle. Describe how fungi feed.

20

ain how the use of nitrate fertiliser on a farmer's field can affect alga	al growth in	Leave blank
rs.		
	(4)	Q13
(Total	al 9 marks)	

14. Cauliflowers are vegetables. They may be grown by micropropagation. Small pieces of plant (explants) are grown on nutrient jelly. The young plants are then transferred into growing trays. The technique produces clones. The process is shown in the diagram.

- (a) Explain why the young cauliflower plants are described as clones.
- (b) Give **one** advantage and **one** disadvantage to the grower of producing new cauliflower plants that are clones.


Advantage	
Disadvantage	

(2)

(2)

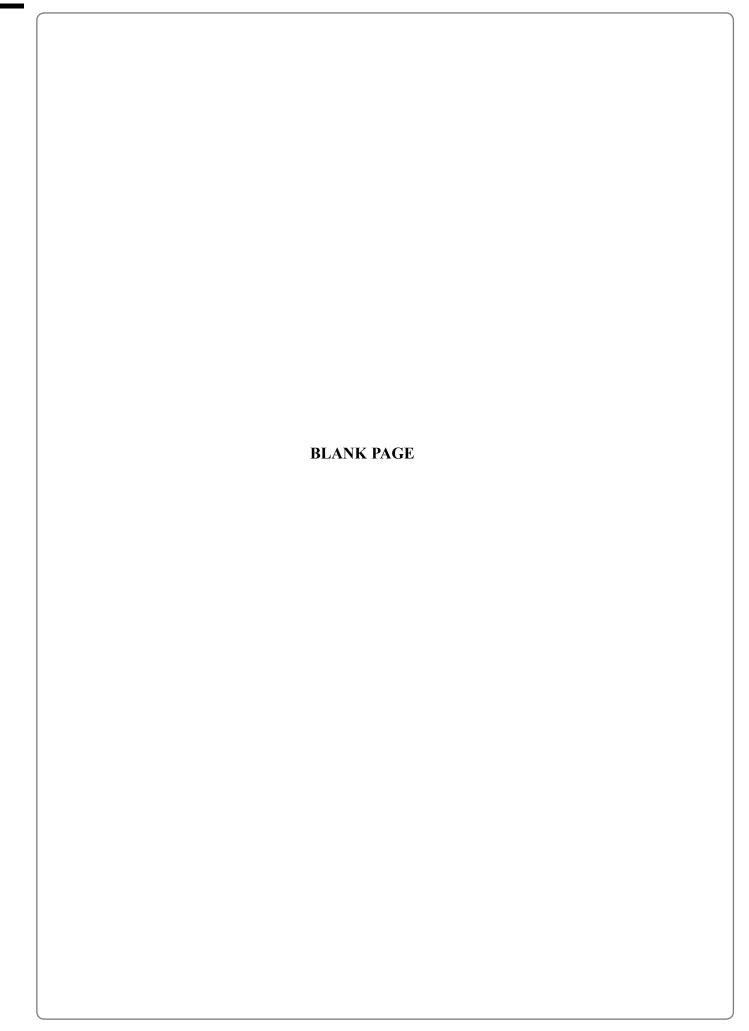
	ientists have produced transgenic animals. These animals can also be cloned.
(1)	What is meant by the term transgenic?
	(2)
(ii)	Describe two possible uses of transgenic animals.
	Use 1
	Use 2
	(4)
	(Total 10 marks)

15. (a) The diagram shows a section through the left side of the heart as seen from the front. The black arrows indicate the direction of blood flow.

(i)	On the diagram, use an arrow and the letter A to show the left atrium.	
		(1)
(ii)	Give two features of the diagram which show that the ventricle is contracting	5.
	1	
	1	••••
		••••
	2	
		(2)
(iji)	Name the vessel through which blood enters the left side of the heart.	
(111)	TValle the vessel through which blood effers the left side of the heart.	
		(1)

Leave
blank

(b) When a part of the heart contracts, the blood pressure in that part increases. When the part relaxes, the blood pressure in that part decreases.


The table shows the changes in blood pressure in the left atrium, the left ventricle and the aorta at different times during a sequence of contraction and relaxation of the heart.

Time in s	Blood pressure in kPa				
Time in s	Left atrium	Left ventricle	Aorta		
0.0	0.5	0.4	10.6		
0.1	1.2	0.7	10.6		
0.2	0.3	6.7	10.6		
0.3	0.4	17.3	16.0		
0.4	0.8	8.0	12.0		

(i)	At which time is the left atrium most relaxed?	
	(1)	
(ii)	Between which times are the atrioventricular valves closed?	
	(1)	
(iii)	At which time does blood start flowing into the aorta? Explain your answer.	
	(3)	Q1
		r

. \	Development of the sign of the		
(a)	People with cystic fibrosis have mucus in the air passages of their lungs that is thicker and stickier than normal.		
	Suggest how cystic fibrosis affects the ability of a person to do exercise.		
	(3)		

This is an example of genetic modification.		
Describe how a gene can be transferred from modification.	m one organism to another using genetic	
	(6)	
	(Total 9 marks)	
	TOTAL FOR PAPER: 120 MARKS	
END		

