

MATHEMATICS STANDARD LEVEL PAPER 1

Friday 7 November 2008 (afternoon)

Candidate session number

1 hour 30 minutes

0 0

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this pape.
- Section A: answer all of Section A in the spaces provided
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them of this examination paper and your cover sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 5]	
	Consider the infinite geometric sequence $3, 3(0.9), 3(0.9)^2, 3(0.9)^3, \dots$	
	(a) Write down the 10 th term of the sequence. Do not simplify your answer.	[1 mark]
	(b) Find the sum of the infinite sequence.	[4 marks]
	· · · · · · · · · · · · · · · · · · ·	
	······································	
	2	
	······································	
	······································	

A particle is moving with a constant velocity along line L. Its initial position is A(6, -2, 10). After one second the particle has moved to B(9, -6, 15).

			\rightarrow
(a)	(i)	Find the velocity vector,	AB

	(ii) Find the speed of the particle.	[4 marks]
(b)	Write down an equation of the line L .	[2 marks]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & p \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -2 & 1 \\ q & \frac{1}{2} \end{pmatrix}$.

- (a) Find AB in terms of p and q. [2 marks]
- (b) Matrix \mathbf{B} is the inverse of matrix \mathbf{A} . Find the value of p and of q. [5 marks]

	7
	· · · · · · · · · · · · · · · · · · ·
	. 🗸
	$\mathcal{O}^{\mathbf{v}}$
	Q
	\mathcal{O}
	_
\mathcal{L}	

ONIN OF OF

Let f be the function given by $f(x) = e^{0.5x}$, $0 \le x \le 3.5$. The diagram shows the graph of f.

(a)	On the same diagram, sketch the graph of the same diagram, sketch the graph of the same diagram.	[3 marks]

		\sim	
(b)	Write down the range of f^{-1} .		[1 mark]

(c)	Find $f^{-1}(x)$.		[3 marks]
		_	

J. IMAXIIII III III K. C	5.	[Maximum	mark:	6
--------------------------	----	----------	-------	---

Let A and B be independent events, where P(A) = 0.6 and P(B) = x.

(a) Write down an expression for $P(A \cap B)$.

[1 mark]

- (b) Given that $P(A \cup B) = 0.8$,
 - (i) find x;

(ii) find $P(A \cap B)$

[4 marks]

(c)	Hence,	explain	why A	and B	are not	mutually	exclusive
(\mathbf{v})	i iiciicc,	CAPIGIII	VV 11 y 21	unu D	are mot	mutating	CACIUSIVO

[1 mark]

	2
	.
 	• • • • • • • • • • • • • • • • • • • •
 ~~~·······	



The diagram shows part of the graph of y = f'(x). The x-intercepts are at points A and C. There is a minimum at B, and a maximum at D.



- (a) (i) Write down the value of f'(x) at C.
  - (ii) **Hence**, show that C corresponds to a minimum on the graph of f, *i.e.* it has the same x-coordinate.

[3 marks]

(b) Which of the points A, B, D corresponds to a maximum on the graph of f?

[1 mark]

(c) Show that B corresponds to a point of inflexion on the graph of f.

[3 marks]



Let  $f(x) = \sin^3 x + \cos^3 x \tan x$ ,  $\frac{\pi}{2} < x < \pi$ .

(a) Show that  $f(x) = \sin x$ .

[2 marks]

(b) Let  $\sin x = \frac{2}{3}$ . Show that  $f(2x) = -\frac{4\sqrt{5}}{9}$ .

[5 marks]

																									4	_	$\rightarrow$	•	-	 -	
									 						 				 					ر ک	)						
									 						 				 			<	/ 人	<b>く</b> /	 						
	 		 •	 •	 •	•	 ٠	•	 	٠	•	 •			 ٠.				 		7	\ \ !			 						
															 				 ~	2	X.				 						
	 								 						 				4	<b>)</b> .					 						
	 		 •	 ٠				•	 					•	 	٠.	(	2	 												
	 	-							 						 		'	• .	 						 						

STATE OF STA



#### **SECTION B**

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

#### 8. [Maximum mark: 13]

Two standard six-sided dice are tossed. A diagram representing the sample space is shown below.

	i	Score on second die							
_		1	2	3	4	5	6	7	
Score on first die	1	•	•	•	•	•	•	4	
	2	•	•	•	•	•	رع		
	3	•	•	•	•	• <	2		
	4	•	•	•	•	QX	<b>/</b> •		
	5	•	•	•	35	-	•		
	6	•	•		5	•	•		

Let X be the sum of the scores on the two dice X(a) Find

(i) P(X = 6);

[6 marks]

Elena plays a game where she tosses two dice.

If the sum is 6, she wins 3 points.

If the sum is greater than 6, she wins 1 point.

If the sum is less than 6, she **loses** *k* points.

Find the value of *k* for which Elena's expected number of points is zero.

[7 marks]

#### 9. [Maximum mark: 16]

The acceleration,  $a \text{ m s}^{-2}$ , of a particle at time t seconds is given by  $a = 2t + \cos t$ .

Find the acceleration of the particle at t = 0. (a)

[2 marks]

Find the velocity, v, at time t, given that the initial velocity of the particle (b) is  $2 \,\mathrm{m\,s^{-1}}$ .

[5 marks]

Find  $\int_0^3 v \, dt$ , giving your answer in the form  $p-q \cos 3$ .

[7 marks]

ve about Some Representation of the second s What information does the answer to part (c) give about the motion of the particle?

[2 marks]



Let  $f(t) = a \cos b(t-c) + d$ ,  $t \ge 0$ . Part of the graph of y = f(t) is given below.



When t = 3, there is a maximum value of 29, at M. When t = 9, there is a minimum value of 15.

- (a) (i) Find the value of a.
  - (ii) Show that  $b = \frac{\pi}{6}$
  - (iii) Find the value of d.
  - (iv) Write down a value for a

[7 marks]

The transformation P is given by a horizontal stretch of a scale factor of  $\frac{1}{2}$ , followed by a translation of  $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ 

(b) Let M' be the image of M under P. Find the coordinates of M'.

[2 marks]

The graph of g is the image of the graph of f under P.

(c) Find g(t) in the form  $g(t) = 7\cos B(t-C) + D$ .

[4 marks]

(d) Give a full geometric description of the transformation that maps the graph of g to the graph of f.

[3 marks]