15 • Chemical Bonding Three Types of Bonding (1 of 8)

15 • Chemical Bonding The Ionic Bond (2 of 8)

15 • Chemical Bonding The Covalent Bond (3 of 8)

15 • Chemical Bonding Lewis Electron Dot Structures (4 of 8) There are **three** general **classes** of **bonds** that form between atoms. You can predict which will form by classifying the atoms as **metals** or **nonmetals**:

metal + metal	metallic bond	Au-Ag alloy
metal + nonmetal	ionic bond	MgCl ₂
nonmetal + nonmetal	covalent bond	SO_2 or CH_4

Some compounds can contain **both ionic** and **covalent** bonds such as K_2SO_4 ... the sulfate ion is held together with covalent bonds... the potassium ions are ionically bonded to the sulfate ions.

Acids are exceptions... they are ionic <u>only</u> when dissolved.

Many ions can be explained because they have gained or lost electrons and attain a **noble gas configuration.**

For example: P^{3-} S^{2-} Cl^- **Ar** K^+ Ca^{2+}

all have the same electron arrangement: $1s^2 2s^2 2p^6 3s^2 3p^6$

The importance of this configuration is that this is one reason why ions form. After these ions form, they stick together in a crystal lattice because **opposites attract**: + - + - + - + -

 $\begin{array}{ll} -+++++ & \text{There are other reasons why some} \\ +-+++++ & \text{ions (ex: } Cu^+ \text{ or } Zn^{2+}) \text{ form.} \\ -++++++ & \text{ions (ex: } Cu^+ \text{ or } Zn^{2+}) \text{ form.} \end{array}$

The covalent bond between two atoms depends on the **balance** of **attractions** between one atom's + nucleus and the other atom's – electrons and the proton-proton **repulsions** as well as electron-electron **repulsions**.

If two atoms have **half-filled orbitals**, the interactions balance at a **small enough distance** so the e⁻⁻'s can be **close to both nuclei** at the same time... this is a **covalent bond**.

Lewis symbols consist of the atomic symbol surrounded by valence electrons. The four sides represent the four valence orbitals. Atoms are usually shown in their excited states. (Families II, III, & IV can also be in their "ground state.")

Li Be B C N Ö F

Ions include brackets and charges. Positive ions show no valence electrons while negative ions show an octet.

 $[Li]^+$ $[Mg]^{2+}$ $[\ddot{0};\dot{c}]^{2-}$

15 • Chemical Bonding Drawing Electron Dot Structures The (Chris) Bednarski Method (5 of 8)

Example: CO₂

Draw the Lewis symbols for each atom.	• O • • C
Connect the unpaired electrons.	io-C
Clean up your drawing.	: : : : :

15 • Chemical Bonding Comparing Ionic & Molecular Substances (6 of 8)

Molecular	Ionic
NO	NO
NO	YES
NO	YES
NO	YES
soft	hard
low	high
covalent	ionic
He, CH ₄ , CO ₂ ,	NaCl, KI,
C ₆ H ₁₂ O ₆	AgNO ₃
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

You will be given a chart of **electronegativity values**. **Memorize** (F = 4.0) (O = 3.5) and (Cl = 3.0). The noble gases have no values... no bonds. **Large** electronegativity in the **upper right** of the per. table and **small** in the **lower left** portion of the table. **Classify** the bond between any two atoms by subtracting their electronegativity values (Δe)

Non-polar covalent	$0 < \Delta$	$0 < \Delta e < 0.5$	
Polar covalent	0.5	Δe	1.7
Ionic	$\Delta e >$	1.7	
The more electronegative atom	n is more n	egativ	<i>'e</i> .
Polar covalent bonds have par	rtial charge	es δ+	and δ–

Use **VSEPR** theory to predict the shape of molecules. The **Steric Number** (the # of lone pairs + bonded atoms) relates the shape of the electron pairs around a central atom.

[1=linear, 2=linear, 3=trigonal planar, 4=tetrahedral]

If each shape is **symmetrical**, the bond dipoles will cancel resulting in a **nonpolar** molecule.

If a shape has **lone pairs** of electrons on the central atom, the shape is often **unsymmetrical**, the molecule is **polar**.

Polar molecules and **ions** dissolve well in **polar** solvents while **nonpolar** molecules dissolve in **nonpolar** solvents. "Like Dissolves Like"

15 • Chemical Bonding Electrone gativity and Polar Bonds (7 of 8)

15 • Chemical Bonding Shapes and Polar Molecules (8 of 8)