General:	When P, V	(inversely proportional)
Formula:	$P \cdot V = constant$	nt or $P_1V_1 = P_2V_2$

Restrictions: P₁ and P₂ must be in the same units V_1 and V_2 must be in the same units

Convert pressures using conversion factors using the fact that 1 atm = 760 mmHg = 760 torr = 101.3 kPa = 14.7 psi $psi = \frac{lb}{in^2}$

730 mmHg x $\frac{101.3 \text{ kPa}}{760 \text{ mmHg}} = 97.3 \text{ kPa}$ Example:

Graphically:

In our lab, we had to **add** the **atmospheric pressure** to our measurements because tire gauges only measure the pressure ABOVE atmospheric pressure.

Consistent (" good") data form a **straight** line (P vs. $\frac{1}{V}$).

 $K = {}^{\circ}C + 273$ $^{\circ}C = K - 273$ **Examples**: $0 \circ C + 273 = 237 K$ $25 \ ^{\circ}\text{C} + 273 = 298 \text{ K}$ 100 °C + 273 = 373 K $300 \text{ K} - 273 = -27 \ ^{\circ}\text{C}$

The Kelvin scale is used in gas law problems because the pressure and volume of a gas depend on the kinetic energy or motion of the particles.

The Kelvin scale is proportional to the KE of the particles... that is, **0 K** (absolute zero) means **0 kinetic** energy. 0 °C is simply the freezing point of water.

12 • The Gas Laws Charles' Law (V and T) Gay-Lussac's Law (P and T) (4 of 8)

12 • The Gas Laws **Kelvin Temperature Scale** (3 of 8)

When T , V (directly proportional) General: $\frac{V}{T} = \text{constant} \text{ or } \frac{V_1}{T_1} = \frac{V_2}{T_2}$ Formula:

Charles' Law

Restrictions: T must be in Kelvins V_1 and V_2 must be in the same units Gay-Lussac's Law When T , P (directly proportional) General: $\frac{P}{T} = \text{constant} \text{ or } \frac{P_1}{T_1} = \frac{P_2}{T_2}$ Formula:

Restrictions: T must be in Kelvins P₁ and P₂ must be in the same units

12 • The Gas Laws **Boyle's Law (P and V)** (1 of 8)

12 • The Gas Laws **Boyle's Law Lab**

(2 of 8)

12 • The Gas Laws The Combined Gas Law (5 of 8)

12 • The Gas Laws The Ideal Gas Law (6 of 8)

12 • The Gas Laws Dalton's Law of Partial Pressure (7 of 8)

12 • The Gas Laws Why Do All Gases Cause the Same Pressure? Graham's Law (8 of 8)

- -	P.
Formula:	-

 $\frac{P \cdot V}{T} = \text{constant} \text{ or } \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$

Restrictions:

T must be in Kelvins V₁ and V₂ must be in the same units P₁ and P₂ must be in the same units

STP ("standard temperature and pressure") is often used as one of the two conditions

 $\mathbf{T} = 0 \ ^{\circ}\text{C} = 273 \text{ K} \ \mathbf{P} = 1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$

Each of the **three gas laws** is really a **special case** of this law.

Example: If $T_1 = T_2$, the law becomes $P_1V_1 = P_2V_2$

$P \cdot V = n \cdot R \cdot T$ or $PV = nRT$
P = pressure
V = volume
n = number of moles
\mathbf{R} = the ideal gas constant
T = temperature (in Kelvins)
R depends on the P and V units used.
ou can use the molar volume info to calculate R
$\frac{Pa)(22.4 L)}{e)(273 K)} = 8.31 \frac{L \cdot kPa}{mol \cdot K}$
$\frac{\text{Im}Hg}{\text{ol}\cdot\text{K}} = 0.0821 \frac{\text{L}\cdot\text{atm}}{\text{mol}\cdot\text{K}}$

When you have a **mixture** of gases, you can determine the pressure exerted by each gas separately. This is called the **partial pressure** of each gas.

Since each gas has the same power to cause pressure (see card #8) the partial pressure of a gas depends on how much of the mixture is composed of each gas (in moles) **Example**: Consider air, a mixture of mostly O₂ and N₂

 $\frac{\text{moles } O_2}{\text{moles total}} = \frac{P_{O_2}}{P_{total}} \qquad \frac{\text{moles } N_2}{\text{moles total}} = \frac{P_{N_2}}{P_{total}}$ Also: $P_{total} = P_{O_2} + P_{N_2}$ This idea is used when a **gas is collected over water** $P_{atm} = P_{gas} + P_{H_2O} \quad P_{H_2O}$ is found on a **chart**

The gas laws work (to 3 significant digits) for **all** gases... that is, all gases have the same **power** to cause **pressure**.

At the same temperature, the KE of each gas is the same. $KE = \frac{1}{2} \text{ mass-velocity}^2...$ if two particles have different masses, their velocities are also different. So... SMALL particles move FAST mV^2 LARGE particles move slowLy Mv^2

We can use this idea with numbers as well: (Graham's Law) $KE_A = KE_B$ $m_A v_A^2 = m_B v_B^2$ [another version of this formula is on pg 323 of the text]