6 • Structure of the Atom
The Subatomic Particles
(1 of 8)

Name	<u>Symbol</u>	<u>Mass</u>	Charge	Location
protons	\mathbf{p}^+	1 u	1 +	part of the nucleus
neutron	n°	1 u	0	part of the nucleus
electron	e	$\frac{1}{1837}$ u	1–	normally at large
				distances from the nucleus

J.J. Thompson is given credit for discovering **electrons** using a Crookes tube and testing many different gases. Cathode rays were found to be beams of electrons.

Cavendish is given credit for the discovery of the neutron.

atoms	the smallest particle of an element. It consists of a central nucleus and electron clouds outside the nucleus.
nucleus subatomic	the dense central portion of an atom. smaller than an atom. The proton, neutron, and electron are subatomic particles.
net charge	the difference in the positive charge due to protons and the negative charge due to electrons in an atom.
nucleons	the particles that make up the nucleus.

atomic number mass number	the number of protons in an atom. This number determines the identity of an element. the number of protons + neutrons
isotopes	atoms with the same number of protons, but different numbers of neutrons. Atoms with the same atomic number, but different mass numbers.
isotopic notation	h shorthand notation for a nucleus that shows the mass #, atomic # and the symbol. U-238 would be ${}^{238}_{92}$ U

Any **real** sample of an element contains more than one naturally occuring **isotope**. For instance, **boron**

-	abundance		mass #	isotopic mass			
boron-10	${}^{10}_{5}B$	19.78%	10	mass = 10.013 u			
boron-11	$^{11}_{5}B$	80.22%	11	mass = 11.009 u			
The atomic mass is the weighted average of the isotopes. at. mass = $\frac{(19.78\%)(10.013u) + (80.22\%)(11.0009u)}{100}$ or at. mass = $(0.1978)(10.013u) + (0.8022)(11.0009u) = 10.81 u$							

6 • Structure of the Atom Terms I-- Atomic Structure (2 of 8)

6 • Structure of the Atom Terms II-- Atomic Structure (3 of 8)

6 • Structure of the Atom Calculating Atomic Mass (4 of 8)

6 • Structure of the Atom Determining Numbers of Protons, Neutrons, and Electrons from the Isotopic Notation (5 of 8)

6 • Structure of the Atom Important People in the Development of the Atomic Theory (6 of 8)

6 • Structure of the Atom Early Experimental Observations That Would Later Be Explained By The Atomic Theory (7 of 8)

6 • Structure of the Atom Rutherford's Gold Foil Experiment (8 of 8)

Consider the following symbol: $\frac{33}{16}S^{2-1}$

The 16 is the **atomic number** which is the number of **protons**.

The 33 is the **mass number** which is the mass of one of the isotopes. This mass is due to the **protons and neutrons**.

The number of **neutrons** is the **mass number - the atomic number**. 33 - 16 = 17 neutrons.

Since the charge is 2-, there are 2 more electrons than protons. In this case, there are 18 electrons.

Democritus [atomos]

philosopher who decided that matter was discontinuous John Dalton [billiard-ball model] experiments with gases... different substances are different combinations of atoms

J.J. Thomson [plum-pudding model] experiments with gas-discharge tubes... atoms have positive and negative parts... the negative electrons are the same from atom to atom

Ernest Rutherford [nuclear model/solar system model] most of the mass of the atom is concentrated in a tiny, positively-charged nucleus

Niels Bohr [Bohr Model (quantized e- energy levels/orbits)]

The Law of Conservation of Mass

the mass of all the reactant molecules = the mass of all the product molecules

The Law of Definite Composition

the percentage composition of any sample of a substance is the same

The Law of Multiple Proportions

when two compounds made of the same two elements (such as CO and CO₂) are broken down to give the same mass of *one* element... the masses of the *other* element will be in simple whole-number ratio.

Ernest Rutherford's classic gold foil experiment led to the nuclear model of the atom.

most alpha's came straight through here

• **the nucleus is tiny** - because most of the alpha's missed the nucleus and went straight through the foil

the nucleus is positively charged - because the (+) charged alpha was repelled by the (+) charged nucleus
the nucleus is incredibly dense - because the nucleus was able to bounce back at a very large angle