SavitaPall.com.

Equilibrium Calculations Practice I

- 1. Suppose that 2.00 mol of HI in a .00 L flask at 425 $^{\circ}$ C react to produce H₂ and I₂. When equilibrium is reached the concentration of H₂ and I₂ are determined each to be 0.214 mol/L. What is the equilibrium constant?
- 2. For the reaction: $N_{2 \text{ (g)}} + 3 H_{2 \text{ (g)}} < -----> 2 NH_{3 \text{ (g)}}$ If the initial $[N_2] = 0.32$ M, and the initial $[H_2] = 0.60$ M. At equilibrium $[H_2] = 0.30$ M What is K_c ?
- 3. For the reaction: $H_{2 \text{ (g)}} + I_{2 \text{ (g)}} < -----> 2 \text{ HI}_{\text{ (g)}}$ $K_c = 55.6$. If the initial $[H_2] = 0.200 \text{ M}$, and the initial $[I_2] = 0.200 \text{ M}$, what is the equilibrium [HI]?
- 4. For the reaction: $H_{2 (g)} + CO_{2 (g)} <----> H_2O_{(g)} + CO_{(g)}$ $K_c = 0.771$. If 0.0100 mol each of CO_2 and $H_{2 (g)}$ are mixed in a 1.0 L container, what are the concentration of all the substances at equilibrium?
 - $K_c = 64$ for the reaction: $N_{2 \text{ (g)}} + 3 H_{2 \text{ (g)}} < -----> 2 NH_{3 \text{ (g)}}$ At a certain temperature. Suppose it was fond that an equilibrium mixture of these gases contained 0.360 M NH₃ and 0.0192 M N₂. What was the concentration of H₂ in the mixture?
 - At a certain temperature $K_c = 0.18$ for the equilibrium ...

$$PCI_{3(g)} + Cl_{2(g)} < ----> PCI_{5(g)}$$

Suppose the reaction vessel at this temperature contained these gases at the following concentrations:

$$[PCI_3] = 0.0420 \text{ M}$$
 $[Cl_2] = 0.0240 \text{ M}$, $[PCl_5] = 0.00500 \text{ M}$

- a) Is the system in equilibrium?
- b) If not, which direction will the equilibrium have to proceed in order to attain equilibrium?
- For the following reaction ... $CH_{4(g)} + H_2O_{(g)} \longrightarrow CO_{(g)} + 3 H_{2(g)}$ At 1500 °C, the equilibrium mixture of these gases is ... $[CO] = 0.300 \text{ mol dm}^{-3}$ $[H_2] = 0.800 \text{ mol dm}^{-3}$ $[CH_4] = 0.400 \text{ mol dm}^{-3}$ At 1500 °C, $K_c = 5.67$, what is the equilibrium concentration of $H_2O_{(g)}$?
- 8. For the reaction ... $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$ $K_c = 4.06$ at 500 $^{\circ}C$, and the initial concentration of both $CO_{(g)}$, and of $H_2O_{(g)}$ is 0.100 mol dm⁻³. Determine the equilibrium concentration of all the reactants and products at this temperature.
- 9. In an equilibrium mixture of the reaction ... $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$ at 250 $^{\circ}C$ in a 2.0 dm³ vessel, there is 0.15 mol of PCl_3 and 0.090 mol of Cl_2 . $K_c = 0.19$ mol dm⁻³ at 250 $^{\circ}C$.
 - a) Calculate the amount of PCl₅ present at equilibrium.
 - b) Calculate the mass of PCl₅ present at equilibrium.

- $SO_{2 (g)}$ + $NO_{2 (g)}$ <----> $SO_{3 (g)}$ + $NO_{(g)}$ At equilibrium $[SO_2]$ = 4.1 M, [NO] = 0.5 M, $[SO_3]$ = 3.0, $[NO_2]$ = 0.5 M 1.
 - a)
 - In another experiment, 8.00 mol of SO₂ and 4.00 mol of NO₂ are placed in a b) 2.00 L flask and are allowed to reach equilibrium. Calculate K.
- $B_{(g)}$ <------ + 2. $A_{(g)}$ $D_{(g)}$
 - 0.80 mol of A and 0.80 mol of B are placed in a 1.0 L flask and react until a) equilibrium is reached. Analysis reveals that 0.60 mol of both C and D are present. Calculate the equilibrium concentrations of A, B, C, and D, and then calculate K.
 - In another experiment, the initial concentrations of A and B are 2.0 M and 0.4 M b) respectively. Calculate the equilibrium concentrations of A, B, C and D.
- $B_{(g)}$ <----- + $D_{(g)}$ If the initial concentrations of A and B are 0.4 M and 0.6 M respectively. Calculate the equilibrium concentration of all relevant compounds.
 - At the temperature of 660 K, the reaction:

$$SO_{2(g)}$$
 + $NO_{2(g)}$ <-----> $SO_{3(g)}$ + $NO_{(g)}$ K = 85.0

A reaction flask at 660 K contains gases at the following concentrations:

$$[SO_2] = 0.0025 \text{ M}, [NO_2] = 0.0035 \text{ M}, [NO] = 0.025 \text{ M}, [SO_3] = 0.0400 \text{ M}$$

- a) Is the system at equilibrium?
- b) If not which direction will the reaction have to go to attain equilibrium?
- Calculate the equilibrium concentration of NH₃ for the reaction:

$$N_{2 (g)} + \frac{1}{3} H_{2 (g)} < ----> 2 NH_{3 (g)}$$

The equilibrium concentrations for the reactants are $[N_2]$ = 0.45 M and $[H_2]$ = 1.10 M, K is 1.7×10^{-2} .

At 373 K, the following reaction has an equilibrium constant, $k = 2.2 \text{ x} 10^{-10}$

If 1.00 mol of phosgene, COCl₂, is placed in a 10.0 L flask, calculate the concentration of carbon monoxide, CO, at equilibrium.

- At 1000 $^{\rm o}$ C, for the reaction ... 2 $H_2O_{(g)}$ \longrightarrow 2 $H_{2(g)}$ + $O_{2(g)}$ $K_c = 7.32 \times 10^{-18}$ mol dm⁻³, what will be the [$H_{2(g)}$] at equilibrium?
- For the equilibrium ... 2 $HBr_{(g)}$ \Longrightarrow $Br_{2(g)} + H_{2(g)}$ $K_c = 0.190 \text{ mol dm}^{-3}$ at 250 $^{\rm O}$ C. 2.085g of $HBr_{(g)}$ was heated to 250 $^{\rm O}$ C in a sealed 8. container of 500 cm³ capacity and maintained at this temperature until equilibrium was established. Calculate the concentration of the reactants and the products.
- 9. In an experiment for the following equilibrium system at 25 °C ... $CH_3COOH_{(1)} + C_2H_5OH_{(1)} \leftarrow CH_3COOC_2H_{5(1)} + H_2O_{(1)}; K_c = 4.00$ The equilibrium concentrations are determined to be: $[CH_3COOH] = 0.330 \text{ mol},$ $[CH_3COOC_2H_5] = 0.660 \text{ mol}, \qquad [H_2O] = 0.660 \text{ mol}$ What amount of C₂H₅OH is present at 25 °C?