| Surname | Centre
Number | Candidate
Number | |-------------|------------------|---------------------| | Other Names | | 0 | # **GCSE** 4782/02 ### **SCIENCE B** **UNIT 2: Science and Life in the Modern World HIGHER TIER** A.M. TUESDAY, 14 January 2014 1 hour | For Examiner's use only | | | |-------------------------|-----------------|-----------------| | Question | Maximum
Mark | Mark
Awarded | | 1. | 10 | | | 2. | 6 | | | 3. | 10 | | | 4. | 9 | | | 5. | 8 | | | 6. | 9 | | | 7. | 8 | | | Total | 60 | | ### **ADDITIONAL MATERIALS** In addition to this paper you may require a calculator and a ruler. ### **INSTRUCTIONS TO CANDIDATES** Use black ink or black ball-point pen. Write your name, centre number and candidate number in the spaces at the top of this page. Answer all questions. Write your answers in the spaces provided in this booklet. If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly. ### INFORMATION FOR CANDIDATES The number of marks is given in brackets at the end of each question or part-question. You are reminded that assessment will take into account the quality of written communication used in your answer to question $\mathbf{2}$ and $\mathbf{7}(b)$. A periodic table is printed on page 16. # Answer all questions. | 1. | - | osis is an inherited disease. | nuses cystic fit | prosis. | [1] | |----|----------------|---|-------------------|----------------------------|--------------| | | <i>(b)</i> The | family trees below show ho | v cystic fibrosis | s has been inherited. | | | | Lu | ıcy's family tree | Dav | id and John's family t | ree | | | | | | | Grandparents | | | | | | | Parents | | | | Lucy | | David John | Children | | | Key | | | | | | | | non-suffering female | non-suf | fering male | | | | | female suffering from cystic fibrosis | male su | ffering from cystic fibros | sis | | | N = | the letters:
normal allele
cystic fibrosis allele | | | | | | (i) | Use the information above | to state the ge | enotype of: | [2] | | | | John | | | | | | | David | | | | | | (ii) | Lucy is heterozygous. Wri | | genotype. | [1] | | | | | | | | | (c) | (i) | Complete the Punnett square below and use it to calculate the chance of Lucy | and | |-----|-----|--|-----| | | | David having a child with cystic fibrosis. | [3] | Chance = % | (ii) | Construct a Punnett square and use it to calculate the chance of Lucy | and, | John | |------|---|------|------| | | having a child with cystic fibrosis. | | [3] | Chance = % 10 4782 020003 | 2. | A student was | aiven three | different types | of antacid tablets. | |----|-----------------|---------------|-----------------|----------------------| | | / Coldadill Was | 911011 111100 | annoronic typoo | or arreadia tabloto. | Identify the key steps in the investigation. Design an experiment he would need to carry out to determine the most effective tablet in treating acid indigestion. | (6 QWC) | the results could be used to reach a conclusion. | Describe h | • | |---------|--|------------|-------| ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | ••••• | | | | | ••••• | | | | | | | | | | | 6 # **BLANK PAGE** **3.** A diet rich in animal fats can cause a build-up of cholesterol in the blood. The table below shows the results of a recent study, linking blood cholesterol levels and the risk of developing heart disease. | Blood cholesterol
/mg per cm ³ | 200 | 220 | 240 | 260 | 280 | |---|-----|-----|-----|-----|-----| | Non-smokers
Risk of developing
heart disease
% | 2.4 | 3.6 | 4.5 | 5.5 | 6.6 | (a) (i) Plot information from the table on the graph paper below. Label your plot non-smokers. [3] (ii) Use the information to calculate the difference in risk of developing heart disease for smokers and non-smokers at a cholesterol level of 240 mg/cm³. [2] | (b) | State two conclusions that can be made from this study. [2] | Examiner only | |-----|---|---------------| | | 1. | - | | | 2. | | | (c) | State two controls the researchers should use to make this a fair test. [2] | | | | 1. | | | | 2. | | | (d) | Suggest one way in which this study could be changed to improve the validity of the results. | | | | | | | | | | | | | 10 | | | | 4782 | [2] # 4. (a) Complete the following table. | Monomer name | tetrafluoroethene | ethene | vinyl chloride | |-----------------------|-------------------|-------------------------------|----------------------------------| | Polymer | PTFE | Polyethene | PVC | | Formula | | C ₂ H ₄ | C ₂ H ₃ CI | | Structural
Formula | F | C = C | | (b) Complete the symbol equation for the polymerisation of ethene. [2] (c) Use the diagram below to explain why melamine does not soften on heating. [3] | (d) | PTFE has been used to develop new artificial veins to transport blood around the body in patients with cardiovascular disease. State two properties of PTFE that makes it suitable for this use. [2] | Examiner
only | |-----|--|------------------| | | | | | | | | | | | | | | | | | Examine | |---------| | only | | 5. | Sulfu | Sulfuric acid reacts with zinc carbonate (ZnCO ₃) to form a useful salt. | | | | | | |----|-------|--|-------------|---|--|--|--| | | (i) | (i) Write a balanced chemical equation for this reaction. | | | | | | | | (ii) | Name the salt that would be formed by reacting hydrochloric acid with potashydroxide solution. | sium
[1] | | | | | | | (iii) | Name the acid and alkali needed to produce potassium nitrate. acid | [2] | | | | | | | | alkali | | | | | | | | (iv) | State one industrial use for the following salts: | [2] | | | | | | | | 1. zinc sulfate | | | | | | | | | 2. potassium nitrate | 8 | | | | | Examine | |---------| | only | | 6. | Radioactive iodine-131 is routinely used as internal radiotherapy in the treatment of thyroid cancers. | | | | | | |----|--|-------|--|---------|--|--| | | (a) | (i) | Describe what is meant by the term internal radiotherapy. | [2] | | | | | | (ii) | Iodine-131 has a half-life of 8 days. Explain what this means. | [2] | | | | | | (iii) | Calculate the fraction of the original amount of iodine-131 that would be left in body after 32 days. | the [2] | | | | | (b) | Expla | ain why there may be a health risk for medical technicians who administer e-131. | [3] | | | | | | | | | | | 9 7. (a) Diabetes is a common disease in which a person can have high blood sugar (glucose) level. Distinguish between **type 1** and **type 2** diabetes. [2] (b) The graphs show the blood sugar levels from two different people. One is suffering from type 1 diabetes; the other is a non-sufferer. ### Graph A | Account for the differences between the two graphs obtained in this study. [6 QWC | Examiner only | |---|---------------| | Describe what the information in graph A shows. Describe what the information in graph B shows. Explain how you can deduce from the graphs which is the sufferer. | | | | | | | · | ·
· | | | | | | | | | | | | | **END OF PAPER** 8 | For continuation only. | Examiner
only | |------------------------|------------------| Examiner only | |---------------| # Periodic Table of the Elements | | | | | | | | |] | |-----------------------------------|---|-------------------|-----------------------------|-------------------------------------|--|--|---|-----------------------------| | | 0 | helium
2
He | neon
10
Ne | argon
18
Ar | krypton
36
Kr | xenon
54
Xe | radon
86
Rn | | | | _ | | fluorine
9 | chlorine
17
CI | bromine
35
Br | 53 – | astatine
85
At | | | | 9 | | oxygen 8 | sulfur
16
S | arsenic selenium 33 34 As Se | antimony tellurium 51 52 Sb Te | polonium
84
Po | | | | 2 | | nitrogen 7 | phosphorus
15
P | | antimony
51
Sb | bismuth
83
Bi | | | | 4 | | carbon 6 | silicon
14
Si | germanium
32
Ge | So
Sn | lead
82
Pb | | | | က | | boron
5
B | aluminium
13
AI | gallium
31
Ga | Indium
49 | thallium
81
TI | | | | | | | | zinc
30
Zn | Cadmium
48
Cd | mercury
80
Hg | | | | | | | | copper 29 Cu | silver
47
Ag | 90ld
79
Au | | | | | | | | nickel
28
Ni | palladium
46
Pd | platinum
78
Pt | | | | | hydrogen
1 | | | cobalt
27
Co | rhodium
45
Rh | iridium
77
Ir | | | | | | | | iron
26
Fe | ruthenium
44
Ru | osmium
76
Os | | | name
umber
bol | | | | | manganese
25
Mn | technetium
43
TC | rhenium
75
Re | | | element name atomic number Symbol | | | | | chromium
24
C r | molybdenum 42 Mo | tungsten
74 | | | | J | | | | vanadium
23
V | niobium
41
N | tantalum
73
Ta | | | | | | | | titanium
22
Ti | zirconium
40
Zr | hafnium
72
Hf | | | | | | | | scandium
21
Sc | yttrium 39 | barium lutetium hafnium tantalum tungsten rhenium osmium 56 71 72 73 74 75 76 Ba Lu Hf Ta W Re Os | | | | 7 | | beryllium
4
Be | sodium magnesium 12 Na Mg | potassium calcium scandium titanium vanadium chromium manganese 19 20 21 23 24 25 K Ca Sc Ti V Cr Mn | rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium ruthenium ruthenium rhodium strontium strontium zirconium niobium niobium molybdenum technetium ruthenium rhodium rhodium strontium zirconium zirconium niobium molybdenum technetium ruthenium rhodium rhodium zirconium zirconium niobium molybdenum technetium ruthenium rhodium rhodium zirconium zirconium niobium molybdenum technetium ruthenium rhodium rhodium zirconium zirconium niobium niobium niobium niobium niobium niobium zirconium niobium nio | barium
56
Ba | radium
88
Ra | | | _ | | lithium
3 | sodium
11
Na | potassium
19
X | rubidium
37
Rb | caesium
55
CS | francium
87
Fr |