Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4462/02

SCIENCE A/CHEMISTRY

CHEMISTRY 1 HIGHER TIER

A.M. TUESDAY, 14 January 2014

1 hour

ΔΠΟΙΤΙΩΝΔ	L MATERIALS
ADDITIONA	

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correcting fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORM	ΜΔΤΙΏΝ	FOR C	ANDID	ATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication used in your answer to questions **4** and **9**.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

[1]

5

Answer all q	questions.
The following diagram shows an outline of the The letters shown are NOT the chemical sy	

1.

				,					
	_								
Α									В
							С	D	
					Е				
								F	

(b)	Give the letters of the two elements which	ch you would expect to	have similar chemica

,	Give the letters of the two elements which you would expect to have similar	CHEIIIICai
	properties. Give a reason for your choice.	

Daggar	[C]
Reason	141

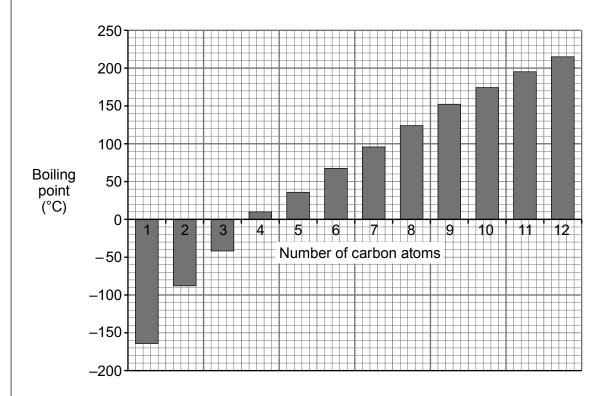
(c) The table below shows the properties of three elements 1, 2 and 3.

Letters and

(a) Give the **letter** of the element which is found in Group 0 and Period 2.

	Properties								
Element	Melting Point (°C)	Boiling Point (°C)	Appearance	Malleable or brittle					
1	1084	2927	shiny brown solid	malleable					
2	2 1414		shiny grey solid	brittle					
3	115	445	yellow solid	brittle					

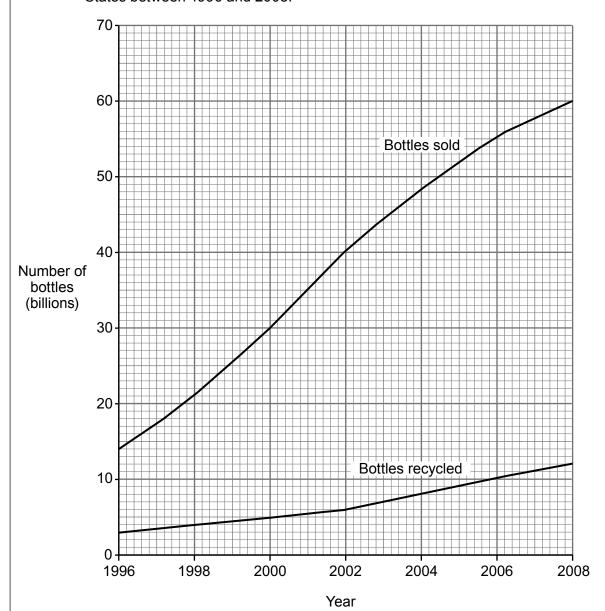
State, giving Table above.	reasons,	which of	elements	1 , 2 or 3	3 could be	e element	C in the	Periodic [2]


BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2. *(a)* Crude oil can be separated into simpler mixtures, called fractions, which contain hydrocarbon compounds with boiling points within a similar range.

The graph below shows the boiling points of hydrocarbons containing 1 to 12 carbon atoms.



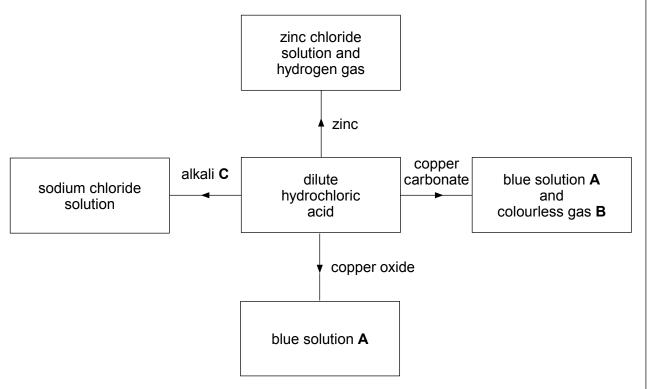
- (i) Give the number of carbon atoms in the hydrocarbon which has the **lowest** boiling point. [1]
- (ii) State how the boiling point changes as the number of carbon atoms increases. [1]
- (iii) A company wants to produce a fraction with a boiling point in the range 120–140 °C.Give the number of carbon atoms present in the hydrocarbons found in this fraction.
- (b) Plastic has replaced glass for making some drink bottles.
 Apart from cost, give one property of plastic that makes it a more suitable material for making drink bottles.

[2]

(c) The graph below shows the number of plastic drink bottles sold and recycled in the United States between 1996 and 2008.

Calculate the percentage (%) of plastic bottles sold in 2008 that were recycled.

Percentage recycled = %



(d) State and explain the advantages of recycling plastic.	[3]

Examiner only

3. The diagram below shows some reactions of dilute hydrochloric acid.

(a) Name the following substances.

blue solution A

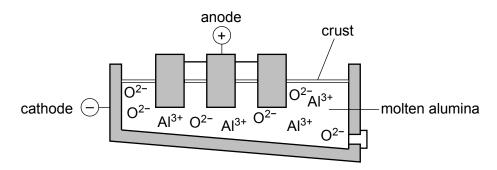
colourless gas B

alkali **C** [3]

(b) Balance the **symbol** equation for the reaction between zinc and dilute hydrochloric acid. [1]

$$Zn + HCI \longrightarrow ZnCl_2 + H_2$$

4


4462 020007

State why eacl fluoridation of d	h process is rinking water	carried out but no one o	and outlin	e why somo	e people	are or	posed [6	to the QWC]
						•••••		••••••
								······································
						• • • • • • • • • • • • • • • • • • • •		······································
						• • • • • • • • • • • • • • • • • • • •		······································
								••••••
	•••••							

© WJEC CBAC Ltd.

(4462-02)

The electrode equations below show how the products are formed.

$$2O^{2-}$$
 - 4e \longrightarrow O_2

(i) Choose from the equations above

an ion,

an atom,

a molecule.

[2]

[2]

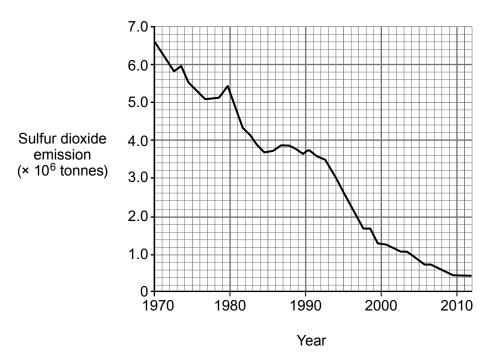
(ii) At which electrode is aluminium formed? Give the reason for your answer.

(iii) Use the information in the diagram above to give the chemical name and formula of alumina. [2]

Chemical name

Formula

(iv) State **one** environmental problem associated with the **electrolysis** of molten alumina. [1]


(b) Aluminium is a good electrical conductor and is therefore used to make overhead power cables.

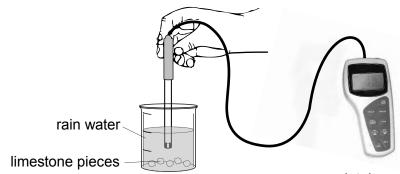
Give a **different** property of aluminium and **one** use which relies on this property. [1]

8

6. (a) The graph below shows the total sulfur dioxide emissions in the UK between 1970 and 2012.

(i) Use the graph to calculate the decrease in sulfur dioxide emissions in **tonnes** between 1994 and 2004. [1]

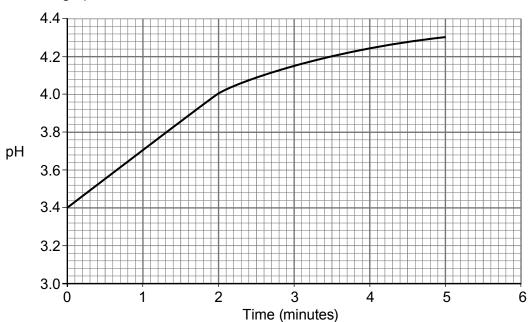
Decrease in sulfur dioxide emissions =tonnes


(ii)	Suggest and explain a possible reason for the trend shown in the graph.	[2]
•••••		···········
• • • • • • • • • • • • • • • • • • • •		

(iii) Balance the symbol equation below which shows a reaction that can lead to the formation of sulfuric acid in the atmosphere. [1]

$$SO_2 + H_2O + O_2 \longrightarrow H_2SO_4$$

(b) A group of pupils investigated the pH change which occurs when limestone reacts with acid rain. The group collected rain water during a rain shower.


They used the apparatus shown below.

They added limestone pieces to the rain water and recorded the pH of the mixture for 5 minutes. The data collected was then downloaded to a computer.

datalogger

The graph below shows the results recorded.

(i) Name the type of reaction taking place. [1]

(ii) Limestone affects the acidity of acid rain. Describe how the graph supports this statement. [2]

(iii) Apart from destroying limestone buildings and statues, give **one** *other* problem associated with acid rain. [1]

8

5

Arctic sea ice 2012

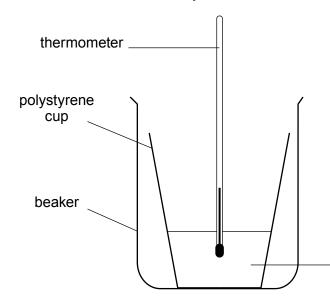
7. Satellite images are used to show the area of Arctic sea ice.

Arctic sea ice 2000

Photograph: National Snow and Ice Data Centre, Colorado.

The shrinking of the ice cap is interpreted by environmental groups as the result of global

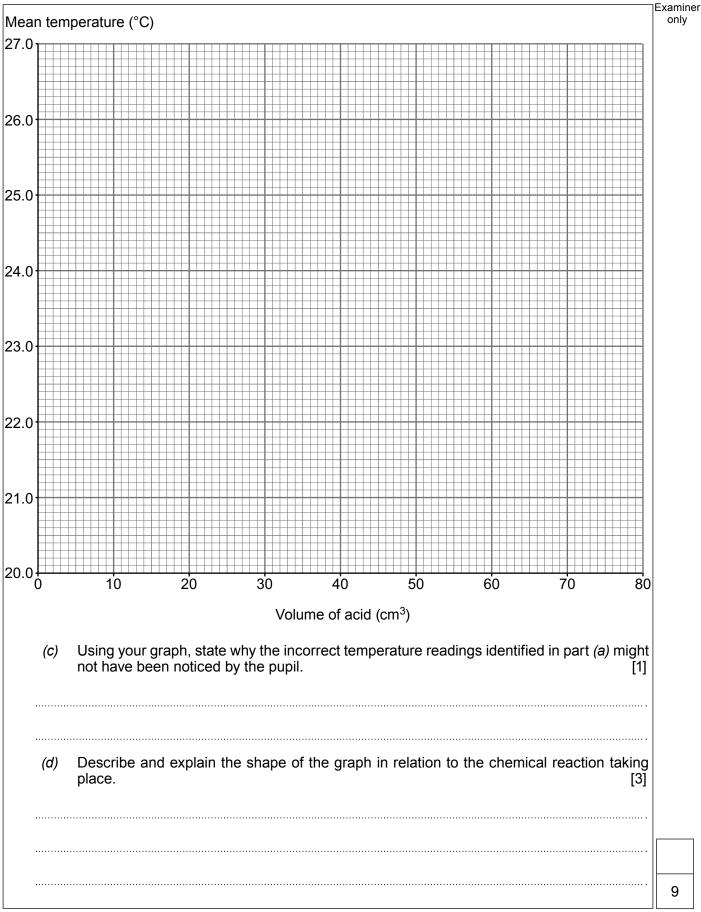
	warming. State and explain the main cause of global warming.							
•••••		•••••						
(b)	Give one consequence of the reduction of Arctic sea ice.	[1]						
(c)	Scientists are currently developing a process called <i>carbon capture and storage (Co</i> to reduce the problem of global warming. There are three main steps to CCS. First carbon dioxide is trapped and separated from other gases produced in coal-power electricity plants. The captured carbon dioxide is transported to a storage location a finally stored far away from the atmosphere (underground or deep in the ocean).	stly, red						
	Use this information to suggest two reasons why some scientists do not support the of CCS.	use [2]						
•••••		•••••						



(a)

8. A pupil used the apparatus below to carry out an investigation to find the temperature change which occurs when dilute hydrochloric acid reacts with dilute sodium hydroxide solution.

The pupil measured 50 cm³ of sodium hydroxide solution, using a measuring cylinder, into a polystyrene cup. He then added 80 cm³ of acid, 10 cm³ at a time, and recorded the highest temperature each time. The experiment was repeated.


50 cm³ sodium hydroxide solution

Volume of acid	Temperature (°C)								
added (cm ³)	Experiment 1	Experiment 2	Mean						
0	21.0	21.0	21.0						
10	22.1	23.5	22.8						
20	24.9	23.5	24.2						
30	28.0	22.8	25.4						
40	26.0	26.8	26.4						
50	27.4	26.6	27.0						
60	26.6	26.8	26.7						
70	26.2	26.2	26.2						
80	25.5	25.7	25.6						

(a)	From the data in the table, state the volume of acid where the temperature r	readings
	appear to be incorrect. Give the reason for your choice.	[2]

(b) On the grid opposite plot the volume of acid against the **mean** temperature and draw a suitable line. [3]

9.	Many car companies are manufacturing hydrogen-fuelled cars. Describe and explain the advantages and disadvantages of hydrogen as a replacement for petrol and diesel to fuel cars. [6 QWC]	Examine only
		6
	END OF PAPER	

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		-
		·····
		······•

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS					
Name	Formula	Name	Formula				
Aluminium	Al ³⁺	Bromide	Br ⁻				
Ammonium	NH ₄ ⁺	Carbonate	CO ₃ ²⁻				
Barium	Ba ²⁺	Chloride	CI ⁻				
Calcium	Ca ²⁺	Fluoride	F ⁻				
Copper(II)	Cu ²⁺	Hydroxide	OH ⁻				
Hydrogen	H⁺	lodide	Ī				
Iron(II)	Fe ²⁺	Nitrate	NO_3^-				
Iron(III)	Fe ³⁺	Oxide	O ²⁻				
Lithium	Li ⁺	Sulfate	SO ₄ ²⁻				
Magnesium	Mg ²⁺						
Nickel	Ni ²⁺						
Potassium	K ⁺						
Silver	Ag^{+}						
Sodium	Na ⁺						
Zinc	Zn ²⁺						

PERIODIC TABLE OF ELEMENTS

•	⁴ He	Helium	20 Ne	Neon	40 Ar	Argon	84 Kr 36	Krypton 02	¹³¹ Xe ₅₄ Xe	Xenon	²²² Rn	Radon			
•	4.0	Ĭ	19 T 20	Fluorine N	35 CI 41	Chlorine A	80 Br 8.	Bromine Kr	127 13 53 5	lodine X	$\left \begin{array}{c} 210 \\ 85 \end{array} \right \left \begin{array}{c} 22 \\ 8 \end{array} \right $	Astatine R			
>			O 8 8	Oxygen	32 S 16	Sulfur	⁷⁹ ₃₄ Se	Selenium E	128 Te	Tellurium	²¹⁰ ₈₄ Po	Polonium			
n			Z ⁴¹ V	Nitrogen	31 P	Phosphorus	75 AS	Arsenic	122 Sb	Antimony	209 Bi	Bismuth			
4			12 6 C	Carbon	28 Si 14 Si	Silicon	73 Ge	Germanium	119 50 Sn	Tin	²⁰⁷ Pb	Lead			
က			11 5	Boron	27 AI	Aluminium	% Ga	Gallium	115 In	Indium	²⁰⁴ ∏	Thallium			
							uZ 99	Zinc	112 Cd	Cadmium	201 Hg	Mercury			
							64 Cu	Copper	108 47 47	Silver	197 79 Au	Gold			
							59 N i	Nickel	106 Pd	Palladium	195 Pt	Platinum			
	H.	Hydrogen					⁵⁹ Co	Cobalt	103 Rh	Rhodium	192 r	lridium			
dno.							⁵⁶ Fe 26 Fe	Iron	¹⁰¹ Ru	Ruthenium	190 OS	Osmium			
Q C							55 Mn	Manganese	99 43 TC	Technetium	¹⁸⁶ Re	Rhenium			
							52 Cr 24 Cr	Chromium	⁹⁶ Mo	Molybdenum	184 W 74	Tungsten		Key:	
							51 V 23 V	Vanadium	93 Nb	Niobium	¹⁸¹ Ta	Tantalum			
							48 Ti 22 Ti	Titanium	91 Zr 40 Zr	Zirconium	179 Hf 72	Hafnium			
		_					45 SC	Scandium	89 Y	Yttrium	139 La 57 La	Lanthanum	²²⁷ ₈₉ Ac	Actinium	
7			⁹ Be	Beryllium	24 Mg	Magnesium	40 Ca	Calcium	88 38 Sr	Strontium	137 Ba	Barium	226 Ra 88	Radium	
-			7 Li	Lithium	23 Na	Sodium	39 K	Potassium	86 Rb	Rubidium	133 CS	Caesium	223 Fr 87	Francium	

- Element Symbol

×

Name

Atomic number

Mass number

© WJEC CBAC Ltd.

(4462-02)