Surname	Centre Number	Candidate Number
Other Names		0

New GCSE

4462/02

SCIENCE A HIGHER TIER CHEMISTRY 1

A.M. MONDAY, 14 January 2013

l hour

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correcting fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

For 1	For Examiner's use only						
Question	Maximum Mark	Mark Awarded					
1.	6						
2.	6						
3.	6						
4.	6						
5.	4						
6.	6						
7.	6						
8.	8						
9.	6						
10.	6						
Total	60						

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication used in your answer to questions 4 and 10.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1. The following table shows some information about some Group 7 elements.

Name	Formula	State at room temperature (20°C)	Colour of vapour	Melting point (°C)
chlorine	Cl ₂	gas	yellow-green	-101
bromine		liquid	orange-brown	-7
iodine	I_2	solid	purple	114

(a)	Give the formula for bromine.	[1]
(b)	A pupil predicted the boiling point of chlorine to be –10 °C.	
	Using the information in the table, suggest two reasons why the pupil gave this value	e. [2]
(c)	Chlorine is a poisonous gas.	
	State one use of chlorine which relates to its poisonous nature.	[1]
(d)	Fluorine is above chlorine in this group of the Periodic Table.	
	Use the information in the table to predict two properties of fluorine.	[2]

2. The following table shows the main products formed during the burning of coal and hydrogen.

Fuel	Main product(s) of burning
coal	carbon dioxide sulfur dioxide water
hydrogen	water

- (a) (i) Name the **three** elements that must be present in coal to give the products shown in the table. [1]
 - (ii) Coal is a finite (non-renewable) resource.

State what is meant by a *finite resource*.

[1]

(b) (i) Balance the symbol equation for the burning of hydrogen in air.

 $H_2 + O_2 \longrightarrow H_2O$

(ii) State the chemical test for hydrogen gas and give the expected result. [1]

.....

(iii) Give **two** disadvantages of using hydrogen as a fuel. [2]

1.

2.

Examiner only

3.	(a)	Crude oil is a mixture of hydrocarbons.		
		State how it was formed.	[2]	
	(h)	The table below shows properties of some fractions that can be obtained from crude o		

Fraction	Size of molecule (number of carbon atoms)	Boiling point range (°C)	Colour of fraction	Viscosity at room temperature	How it burns
fuel gas	C ₁ -C ₄	-160 to 20	colourless		very easily with a clean yellow flame
petrol	C ₅ -C ₁₀	20 to 70	pale yellow	runny	easily with a clean yellow flame
naphtha	C ₈ -C ₁₂	70 to 120	yellow	fairly runny	quite easily with a yellow flame and some soot
kerosene	C ₁₀ -C ₁₆	120 to 240	dark yellow	quite viscous	harder to burn with quite a smoky flame
diesel oil and lubricating oil	C ₁₅ -C ₃₀	240 to 350	brown	viscous	hard to burn and a smoky flame

4462 020005

Use	the information in the table opposite to answer parts (i) and (ii).
(i) 	Describe how any two properties of crude oil fractions depend on the size of the molecule.
(ii)	Two fuels used in caravans are propane, C_3H_8 , and butane, C_4H_{10} . Both fuels at used in the summer but propane is preferred during the winter.
	Explain why.

Turn over.

Copper sulfate			Ex
	e crystals can be prepared	by reacting copper carbonate with dilute sulfuric a	cid.
The unlabelled	d diagrams below show to	wo of the three stages involved.	
Describe the production in the	preparation of copper sult ar answer what you would	fate crystals by this method. [6 QV lexpect to see at each stage.	VC]
•••••			

5. Complete the following table.

Examiner only

Name of compound	Formula of positive ion	Formula of negative ion	Formula of compound
ammonium hydroxide		OH-	NH ₄ OH
lithium sulfate	Li ⁺	SO ₄ ²⁻	
lead nitrate	Pb ²⁺	NO ₃ -	
calcium hydrogencarbonate	Ca ²⁺		Ca(HCO ₃) ₂

4

4462

© WJEC CBAC Ltd.

A bar chart of the densities *at room temperature* of all the elements in Period 3 of the Periodic Table is shown below. **6.** (a)

Elements in Period 3

(i)	Name all the metals in this period.	[1]

(11)	Name the element in this period that has both metallic and non-metallic proper	ties.
		[1]

(111)	Give the reason	on that the bai	rs for chlorine	and argon ar	e too small to	be seen. [1]
	•••••					

(iv)	Give the trend in the densities of the metals going across this period.	[1]

temperature (g/cm³)

(b)	The table below	gives the me	elting points	of all the	elements in	Period 3.
-----	-----------------	--------------	---------------	------------	-------------	-----------

Element	Na	Mg	Al	Si	Р	S	Cl	Ar
Melting point (°C)	98	650	660	1410	44	113	-101	-189

How well does the evidence in the table support the following statement?

'The melting points of non-metals decrease from left to right across the Periodic Table.' [2]

4462 020009

The	e order of reactivity of so	ne elements is shown below.	
Dro	Most reactive Least reactive	sodium calcium magnesium aluminium carbon zinc iron hydrogen lead copper silver gold	ire of substances react and
give	e any expected observation	your answer, whether the following pain(s).	irs of substances react and
(a)	Iron and copper sulfat	e solution	[2]
(<i>b</i>)	Magnesium and dilute	hydrochloric acid	[2]
(c)	Aluminium oxide and	carbon	[2]

© WJEC CBAC Ltd (4462-02)

xaminer only

8. Two gas syringes, containing a total 50 cm³ of air, were connected as shown in the diagram below. The copper wire was heated strongly and the air passed over it five times. The hot copper reacted with the oxygen in the air. The apparatus was then allowed to cool to room temperature before the volume of gas remaining in the syringes was measured.

Results

Initial volume of air	50 cm^3
Final volume of gas	41 cm ³

(a)	Gases expand when heated. State why the apparatus was allowed to cool to r	oom
	temperature before taking the final reading.	[1]

(b)	(i)	Calculate the percentage of	of oxygen	in th	ne air	using	the	results	from	the	above
		experiment.									[2]

Percentage of oxygen =	0/0

(11)	The actual percentage of oxygen in the air is 21% . Assuming no leakages in the
	apparatus give one possible reason why the experiment did not give this expected
	value.
	-

Examine
only

<i>(c)</i>	(i)	During the experiment the shiny brown copper reacted and turned black. Name this black substance.	
	(;;)		[1]
	(11)	What change would you expect in the mass of the solid during the experiment? Give a reason for your answer.	[1]
(d)	(i)	Name the gas that makes up the biggest proportion of that remaining in the syringes.	he [1]
	(ii)	Name the very unreactive gas used to fill light bulbs that is also present in the syringes.	he [1]

8

(4462-02)

9. The diagra	m below shows	the apparatus used	during the e	electrolysis of	molten lead	bromide.
----------------------	---------------	--------------------	--------------	-----------------	-------------	----------

(a)	For electricity to flow the lead bromide must be molten. Give the reason for this.	[1]

<i>(b)</i>	Balance the electrode equation which takes place at the anode.	[1]

$$Br^ Br_2$$

(c)	(i)	State, in terms of electrons , what happens to the lead ions at the cathode.	[1]

(ii)	Describe what you would expect to observe at the cathode.	[1]

Explain how natural processes kee approximately constant. Discuss h gases.	ow numan activities	s are changing the o	[6 QWC]

END OF PAPER

Turn over.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Examine only
		······

Question number	Additional page, if required. Write the question numbers in the left-hand margin.								
	-	\neg							

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Examine only
		······

FORMULAE FOR SOME COMMON IONS

POSITIV	'E IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	NH_4^+	Carbonate	CO_3^{2-}
Barium	Ba^{2+}	Chloride	Cl ⁻
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^{-}
Copper(II)	Cu ²⁺	Hydroxide	OH^-
Hydrogen	H^{+}	Iodide	I -
Iron(II)	Fe^{2+}	Nitrate	NO_3^-
Iron(III)	$\mathrm{Fe^{3+}}$	Oxide	O^{2-} SO_4^{2-}
Lithium	Li^{+}	Sulfate	$\mathrm{SO_4}^{2-}$
Magnesium	Mg^{2+} Ni^{2+}		
Nickel	Ni^{2+}		
Potassium	K^+		
Silver	$\mathbf{Ag}^{\mathbf{+}}$		
Sodium	Na ⁺		
Zinc	$\mathbb{Z}n^{2+}$		

PERIODIC TABLE OF ELEMENTS

							2	20							
0	⁴ He	Helium	$^{20}_{10}\mathrm{Ne}$	Neon	$^{40}_{18}\mathrm{Ar}$	Argon	84 Kr	Krypton	¹³¹ Xe	Xenon	$_{86}^{222}\mathrm{Rn}$	Radon			
_			19 F	Fluorine	35 CI	Chlorine	$^{80}_{35}\mathrm{Br}$	Bromine	Γ^{127}_{53}	Iodine	$^{210}_{85}\mathrm{At}$	Astatine			
9			O 8 1	Oxygen	$\frac{32}{16}$ S	Sulfur	79 Se	Selenium	¹²⁸ ₅₂ Te	Tellurium	$^{210}_{84}\mathbf{Po}$	Polonium			
v			N_7^{14}	Nitrogen	31 P	Phosphorus	$^{75}_{33}$ As	Arsenic	122 Sb	Antimony	$^{209}_{83}\mathrm{Bi}$	Bismuth			
4			$_{6}^{12}C$	Carbon	$^{28}_{14}\mathrm{Si}$	Silicon	73 Ge	Germanium	$^{119}_{50}\mathrm{Sn}$	Tin	$^{207}_{82} \mathbf{Pb}$	Lead			
3			11 B	Boron	$^{27}_{13}$ A1	Aluminium	70 Ga	Gallium	115 In	Indium	$^{204}_{81}{ m Tl}$	Thallium			
							$\mathbf{u}\mathbf{Z}_{\mathfrak{S}9}^{0\mathfrak{E}}$	Zinc	112 48 Cd	Cadmium	$ m gH_{80}^{201}Hg$	Mercury			
							64 29 Cu	Copper	$^{108}_{47}\mathrm{Ag}$	Silver	6L	Gold			
							$\overset{59}{\overset{28}{\text{Ni}}}\text{Ni}$	Nickel	106 Pd	Palladium	$^{195}_{78}\mathbf{Pt}$	Platinum			
	H	Hydrogen					⁵⁹ Co	Cobalt	103 Rh	Rhodium	$^{192}_{77}\mathrm{Ir}$	Iridium			
dno							⁵⁶ Fe	Iron	101 44 Ru	Ruthenium	190 Os	Osmium			
Group							55 Mn	Manganese	99 Tc	Technetium	¹⁸⁶ ₇₅ Re	Rhenium			
							$_{24}^{52}\mathrm{Cr}$	Chromium	⁹⁶ Mo	Molybdenum	184 W	Tungsten		Key:	
							51 V 23 V	Titanium Vanadium Chromium	93 Nb	Niobium	¹⁸¹ Ta	Tantalum			
							⁴⁸ Ti	Titanium	$^{91}_{40}\mathrm{Zr}$	Zirconium	179 Hf	Hafnium			
							45 Sc	Scandium	${f Y}_{68}^{88}{f Y}$	Yttrium	¹³⁹ La	Lanthanum	$_{89}^{227}\mathrm{Ac}$	Actinium	
7			⁹ ₄ Be	Beryllium	$^{24}_{12}\mathrm{Mg}$	Magnesium	$_{20}^{40}\mathrm{Ca}$	Calcium	88 38 Sr	Strontium	137 Ba	Barium	²²⁶ Ra	Radium	
			$^{7}_{3}$ Li	Lithium	23 Na	Sodium	$^{39}_{19}$ K	Potassium	⁸⁶ ₃₇ Rb	Rubidium	133 Cs	Caesium	$^{223}_{87}{ m Fr}$	Francium	

- Element Symbol

Name

Atomic number

Mass number

© WJEC CBAC Ltd.

(4462-02)