Surname	Centre Number	Candidate Number
Other Names		0

GCSE

0240/01

ADDITIONAL SCIENCE FOUNDATION TIER CHEMISTRY 2

A.M. TUESDAY, 29 January 2013

45 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	6			
2.	4			
3.	7			
4.	7			
5.	6			
6.	5			
7.	8			
8.	7			
Total	50			

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

[1]

Answer all questions.

1. (a) Three types of disposable nappy were soaked in water for 10 minutes. They were weighed and the increase in mass was recorded. The results are shown in the graph below.

(i) State which nappy, A, B or C, absorbed least water. [1]

(ii) Hydrogels are the type of smart material used in making these nappies. Choose from the box below another use of hydrogels.

artificial snow gumshields lenses in sunglass	ses
---	-----

(b) Thermochromic pigments change colour with changing temperature. Choose from the box below **one** use of thermochromic pigments. [1]

bottles	sunglasses	television screens	forehead thermometers

(c) The following box contains some information about carbon nanotubes.

Carbon nanotubes are flat sheets of carbon atoms rolled up to form very thin, cylindrical tubes. One use of nanotubes is in computer chips where they are fixed in place and are not believed to be a health risk.

However, free carbon nanotube particles have a structure similar to that of asbestos fibres. Asbestos fibres can cause lung problems when inhaled in large amounts over long periods.

Use the information above to help you answer the following questions.

(i)	Name the element from which nanotubes are made.	[1]
(ii)	State why the use of nanotubes in computer chips is not believed to pose a hearisk.	lth [1]
(iii)	State why some people are concerned about the use of nanotubes as f particles.	ree [1]

6

0240 010003

© WJEC CBAC Ltd. (0240-01) Turn over.

2. The following table shows some information about three common metals.

Metal	Properties	Uses
aluminium	strong, low density, good conductor of heat and electricity, resistant to corrosion	overhead power cables, saucepans, cooking foil, drinks cans, aeroplanes, window frames
copper	attractive colour, good conductor of heat and electricity, malleable, ductile	ornaments, jewellery, electrical wires, water pipes, saucepan bases
titanium	hard, strong, high melting point, low density, resistant to corrosion	aircraft industry, medical applications, jewellery, golf clubs

(<i>a</i>)		the information in the table to give the main reason for the choice of metal in the following uses.	acn
	(i)	Aluminium for overhead power cables.	[1]
	(ii)	Copper for saucepan bases.	[1]
(b)	Give	one reason why titanium is used in the aircraft industry.	[1]
(c)	Give	one medical application of titanium.	[1]

[1]

0240

3.	Many	fertilisers	are made	from	ammonia	NH.	
J.	iviany		arc mauc	110111	ammoma,	11113	

(a) Complete the following **word** equation by giving the name of the compound formed when ammonia reacts with sulphuric acid. [1]

ammonia + sulphuric acid ----

(b) Complete the following **word** equation by giving the name of the acid used to produce ammonium nitrate. [1]

(c) Name the type of reaction taking place in (a) and (b).

(d) The table below shows the nutrient content of three types of fertiliser.

	Percentage of nutrients present / %		
Fertiliser	Nitrogen	Potassium	Sulphur
A	34	0	0
В	21	0	24
С	0	52	12

(i) State which fertiliser, **A**, **B** or **C**, is not made from ammonia, NH₃. Give a reason for your answer. [2]

Fertiliser

eason

(ii) One of the fertilisers is produced when ammonia reacts with sulphuric acid, H_2SO_4 . State which one and give a reason for your answer. [2]

Fertiliser

Reason

7

© WJEC CBAC Ltd. (0240-01) Turn over.

						į.–
	calcium	copper	iron	magnesium	sodium	
			a1	nd		
(b)				nd two different sa		
	Describe a simple Include details			ry out to show whair test.	ich sample is the	harder [5]

only

The following table shows the observations made when some metals were added to solutions containing compounds of other metals. 5.

Metal	Solution	Observations
copper	zinc sulphate	no reaction
magnesium	zinc sulphate	magnesium ribbon coated in dark solid
zinc	copper sulphate	brown deposit on the zinc, solution gradually loses its blue colour
zinc	magnesium sulphate	no reaction

	(1)	in order of reactivity with the most reactive first. [1]
		Most reactive
		Least reactive
	(ii)	Name the products formed when magnesium reacts with zinc sulphate solution. [2]
(b)		is extracted from its ore, iron oxide, by heating with carbon. The process taking e is shown in the equation below.
		iron oxide + carbon
	(i)	State which of iron and carbon is the more reactive. Give a reason for your choice. [1]
		More reactive
		Reason
	(ii)	I State why this method could not be used for the extraction of a reactive metal such as aluminium. [1]
		II Name the process used to extract aluminium. [1]

6. (a) The following diagrams show the structures of some substances. Draw a line from each structure to the correct name of the substance. [4]

copper

graphite

diamond

ice

sodium chloride

(b) Name the **two** substances that are good conductors of electricity.

[1]

and

[5]

7. (a) Complete the following table of information about the atoms of some elements.

The Periodic Table of Elements shown on the back cover of this examination paper may be helpful in answering this question.

Element	Symbol	Number of protons	Number of neutrons	Number of electrons
sodium	²³ Na	11	12	11
calcium	⁴⁰ ₂₀ Ca	20		
aluminium		13	14	13
	³⁹ ₁₉ K	19		19

<i>(b)</i>	Atoms of different elements each have a different mass, known as the relative atomic
	mass (A_r) . The relative atomic mass compares the masses of different atoms on a scale
	which gives hydrogen a mass of 1. State why the actual mass of an atom is not used. [1]

(c) Calculate the relative molecular mass (M_r) of nitric acid, HNO₃. [2]

$$A_{\rm r}({\rm H}) = 1$$
 $A_{\rm r}({\rm N}) = 14$ $A_{\rm r}({\rm O}) = 16$

$$M_{\rm r}({\rm HNO_3}) = \dots$$

8. (a) Complete the table below by giving the structural formulae for methane and ethane. [2]

Name	methane	ethane	ethene
Formula	CH ₄	C_2H_6	C ₂ H ₄
Structural formula			H $C=C$ H

<i>(b)</i>	Ethene can	be produced	during a	process	known	as crack	ing
(- /			5, 1, 1 - 1 - 2	P			

$$C_{12}H_{26} \longrightarrow C_{10}H_{22} + C_{2}H_{4}$$

State **two** conditions necessary for cracking to take place. [2]

and

- (c) Polythene is produced from ethene.
 - (i) Name the process taking place when polythene is produced from ethene. [1]

.....

(ii) Give **one** use of polythene. [1]

(iii) Give **one** reason why the recycling of plastics such as polythene is important for the environment. [1]

END OF PAPER

FORMULAE FOR SOME COMMON IONS

POSITIV	VE IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	NH ₄ ⁺	Carbonate	CO_3^{2-}
Barium	Ba ²⁺	Chloride	Cl ⁻
Calcium	Ca ²⁺	Fluoride	${f F}$ $^-$
Copper(II)	Cu ²⁺	Hydroxide	OH^-
Hydrogen	H^{+}	Iodide	Ι-
Iron(II)	Fe ²⁺	Nitrate	NO_3^-
Iron(III)	Fe ³⁺	Oxide	O^{2-} SO_4^{2-}
Lithium	\mathbf{Li}^{+}	Sulphate	$\mathrm{SO_4}^{2-}$
Magnesium	Mg ²⁺ Ni ²⁺		
Nickel	Ni^{2+}		
Potassium	K ⁺		
Silver	$\mathbf{Ag}^{\boldsymbol{+}}$		
Sodium	Na^{+}		
Zinc	$\mathbf{Z}\mathbf{n}^{2+}$		

PERIODIC TABLE OF ELEMENTS

2 Group	Group	Group	Group	Group	Group	dn						m	4	w	9	r	0
								¹ H Hydrogen									$_{2}^{4}$ He
⁹ ₄ Be							_					11 B	12 C	$\mathbf{Z}^{rac{41}{r}}$	O 8 8	19 F	$^{20}_{10}\mathrm{Ne}$
Beryllium												Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
$^{24}_{12}{ m Mg}$												²⁷ ₁₃ A1	28 Si	31 P	32 S 16 S	35 CI	$^{40}_{18}\mathrm{Ar}$
Magnesium												Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
$^{40}_{20}$ Ca $^{45}_{21}$ Sc $^{48}_{22}$ Ti $^{51}_{23}$ V $^{52}_{24}$ Cr $^{55}_{25}$ Mn	⁴⁸ Ti ⁵¹ V ⁵² Cr	$\begin{bmatrix} 51 \mathbf{V} \\ 23 \mathbf{V} \end{bmatrix} \begin{bmatrix} 52 \mathbf{C} \mathbf{r} \\ 24 \mathbf{C} \mathbf{r} \end{bmatrix}$	⁵² Cr		55 M	n	56 Fe	⁵⁹ Co	$^{59}_{28}\mathrm{Ni}$	64 29 Cu	$^{65}_{30}\mathrm{Zn}$	70 Ga	73 Ge	75 As	⁷⁹ Se	$^{80}_{35} mBr$	84 Kr
Calcium Scandium Titanium Vanadium Chromium Manganese	Titanium Vanadium Chromium	Vanadium Chromium	Chromium		Mangar	ese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
$^{88}_{38}{ m Sr}$ $^{89}_{39}{ m Y}$ $^{91}_{40}{ m Zr}$ $^{93}_{41}{ m Nb}$ $^{96}_{42}{ m Mo}$ $^{99}_{43}{ m Tc}$	$^{91}_{40}\mathrm{Zr}$ $^{93}_{41}\mathrm{Nb}$ $^{96}_{42}\mathrm{Mo}$	93 Nb 96 Mo	⁹⁶ Mo		99 Tc		101 Ru	¹⁰³ ₄₅ Rh	106 Pd	108 Ag	112 Cd	$^{115}_{49} { m In}$	$^{119}_{50}\mathrm{Sn}$	qS_{12}^{72}	¹²⁸ ₅₂ Te	I 27 I	¹³¹ Xe
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium	Zirconium Niobium Molybdenum	Niobium Molybdenum	Molybdenum		Technetiv	ш.	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
$^{137}_{56}$ Ba $^{139}_{57}$ La $^{179}_{72}$ Hf $^{181}_{73}$ Ta $^{184}_{74}$ W $^{186}_{75}$ Re	$^{179}_{72}\mathrm{Hf}$ $^{181}_{73}\mathrm{Ta}$ $^{184}_{74}\mathrm{W}$	181 Ta 184 W	184 W		¹⁸⁶ R	o,	sO 061 20 92	192 Ir	195 Pt	¹⁹⁷ Au	$^{201}_{80}{ m Hg}$	$^{204}_{81} { m Tl}$	$_{82}^{207}$ Pb	209 83 Bi	$_{84}^{210} \mathrm{Po}$	$^{210}_{85}\mathrm{At}$	²²² ₈₆ Rn
Barium Lanthanum Hafnium Tantalum Tungsten Rhenium	Hafnium Tantalum Tungsten	Hafnium Tantalum Tungsten	Tungsten		Rheni		Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
$\frac{226}{88}$ Ra $\frac{227}{89}$ Ac	$^{227}_{89}$ Ac																
Francium Radium Actinium Key:		Key:	Key:	Key:													
	Money and	Modernm	Moss 2011	Moss	100	Š		<									
Mass humber	INTERNATION INTERN	IVIANN HUILL	IVIASS LIGILIC	1 11 000 11 0 1111	חווחוו	3			\downarrow	– Eleme	Element Symbol	loo					
Atomic number	Atomic nu	Atomic nu	Atomic nu	Atomic nu	ic nu	m	er —	N			•						