Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4462/02

SCIENCE A/CHEMISTRY

CHEMISTRY 1 HIGHER TIER

A.M. THURSDAY, 13 June 2013

1 hour

Suitable for Modified Language Candidates

For 1	For Examiner's use only					
Question	Maximum Mark	Mark Awarded				
1.	9					
2.	6					
3.	3					
4.	6					
5.	4					
6.	5					
7.	6					
8.	7					
9.	8					
10.	6					
Total	60					

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

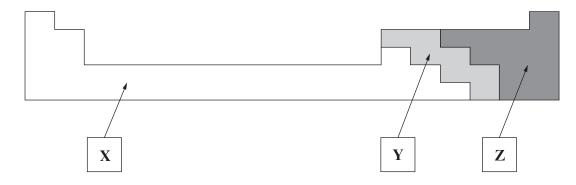
The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication used in your answer to questions 4 and 10.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1. The table below shows some information about elements **A-F**. The letters are not the chemical symbols of the elements.


Element	Element Colour		Boiling point (°C)	Conducts electricity	Density (g/cm ³)	
A dull grey		1414	2900	yes	2.03	
В	pale yellow	-219 -188 no		no	0.0017	
C	orange brown	_7	59	no	3.10	
D	D shiny brown		2927	yes	8.92	
E	shiny grey	1538	2861	yes	7.87	
F	colourless	-157	-153	no	0.0033	

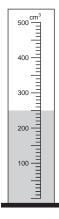
(a)	Choose from the elements A-F. Which of the elements are gases at room temperature	e?
		[1]

.....

(b)	Which element has the biggest difference between melting point and boiling point?	[1]

(c) The following diagram shows an outline of the Periodic Table.

(i)	Element A is found in area Y of the Periodic Table. Explain how th	e information
	in the table supports this.	[2]


.....

(ii) From elements **B-F**, identify **all** that would be found in area **X**. [1]

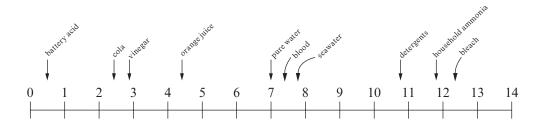
4462 020003

(d) A student has a sample of element **D** of mass 540 g. She measures its volume using a measuring cylinder as shown below.

Measuring cylinder before adding sample of element **D**

Measuring cylinder after adding sample of element **D**

(i) Use the information given above and the equation below. Calculate the density of the sample of element **D**. [2]


density =
$$\frac{\text{mass}}{\text{volume}}$$

Density of sample of element $\mathbf{D} = \dots g/\text{cm}^3$

(ii) Another pupil obtained a value of 9.10 g/cm³. Suggest why this value is different to that given in the table. [2]

9

2. The following diagram shows the pH scale and the pH values of some common substances.

- (a) Choose from the substances above. Name
 - (i) the strongest acid, [1]
 - (ii) the weakest alkali, [1]
 - (iii) a neutral substance. [1]
- (b) John was studying the reactions of acids with three different substances, A, B and C. He recorded his observations and temperature changes in the table shown below.

Substance added to acid	Observations	Temperature change (°C)
A	A bubbles of gas produced, gas collected turns limewater milky, substance reacts to produce blue solution	
В	no gas produced, substance reacts to produce a blue solution	
C	no visible change	+8

Identify A, B and C from the substances in the box below.

copper carbonate copper oxide magnesium sodium chloride sodium hydroxide

A

B

C

6

[3]

Turn over.

		Uses	
	copper	electrical wiring, water pipes, saucepan bases, jewellery	
	titanium	hip replacements, rotors on helicopters, pipes in chemical industry	
Desc	ribe how the	e properties of copper and titanium make them suitable for these uses [6]	5 Q'

6

[3]

5. (a) Complete the table below that shows information about four ionic compounds.

Compound	Formula Elements present		
aluminium oxide	Al_2O_3	aluminium and oxygen	
calcium hydroxide	Ca(OH) ₂		
sodium carbonate		sodium, carbon and oxygen	
calcium nitrate		calcium, nitrogen and oxygen	

(b) Sodium oxalate occurs naturally in many plants. It can be made from oxalic acid. Oxalic acid contains two hydrogen atoms, two carbon atoms and four oxygen atoms.

Use this information to write the formula of oxalic acid.

Formula of oxalic acid

4462 020007

[1]

6. The table below shows some properties of the elements in Group 0 – the noble gases.

Element	Atomic mass	Density (g/dm³)	Melting point (°C)	Boiling point (°C)
helium	4	0.18	-272	-269
neon	20	0.9	-249	-246
argon	40	1.8		-186
krypton	84	3.7	-157	-152
xenon	131	5.9	-112	-105

(a)	Describe the trend in the melting point going down the group.	[1]
(b)	Use the data in the table to estimate the melting point of argon.	[1]
(c)	All Group 0 elements are gases at room temperature. State how the information in table supports this.	the [1]
(d)	Helium is used to fill party balloons. Give one property not shown in the table the makes helium suitable for this purpose.	hat [1]
(e)	Under certain conditions, xenon can be made to burn in oxygen to form xenon trioxic XeO_3 . Balance the following symbol equation for the reaction. $Xe + O_2 \longrightarrow XeO_3$	de, [1]

5

	lead 1	how the burning of coal results in the production of sulfur to environmental problems when released into the atmost er one example of the resulting environmental damage.		
		ollowing graph shows the amount of coal burnt and sulfur obetween 1970 and 2008.	dioxide	e emissions in the
Sulfur diemission: (1,000 toi	S	20,000 18,000 14,000 12,000 10,000 8,000 4,000 2,000 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006	- 1,200,000 - 1,000,000 - 800,000 - 600,000 - 400,000 - 200,000	Coal burnt (1,000 tonnes)
	(i)	Why is the data shown in this graph not as expected?		[2]
	(ii)	Suggest a possible reason for the unexpected data.		[1]

6

© WJEC CBAC Ltd. (4462-02) **Turn over.**

Examiner only

(a)	State what is meant	by a <i>hydrocarbon</i> .		
(b)	Crude oil is separat	ed into fractions in a p	process called fractional distillation.	
		refinery gases	bottled gas	
		gasoline (petro	l) cars	
		naphtha	making chemicals	
		kerosene	aircraft	
		diesel oil	cars, lorries, buses	
crud	e oil —	fuel oil	ships, power stations	
		bitumen		
		Ottumen	road surfacing	
	State why the fracti	ons obtained are not s	ingle compounds.	

(c)	Most fractions	are	used	as	fuels.	However,	others	are	converted	into	small	reactive
	molecules that of	can 1	be use	d t	o form	plastics.						

Name the process used to

(i) produce the small reactive molecules,

.....[1]

(ii) make plastics from these small reactive molecules.

[1]

(d) Ethene is an example of a monomer. It is used to produce polythene. The structure of ethene is shown below.

$$C = C$$

Describe what happens to ethene molecules in the production of polythene. [2]

(e) Give **one** disadvantage of the use of plastics such as polythene. [1]

9. The electrolysis of water can be used to produce hydrogen. The following table shows the results of an experiment carried out to determine the effect of current on the volume of hydrogen produced after 30 seconds.

	Volume of hydrogen produced after 30 seconds (cm ³)										
Current (mA)	Experiment 1	Experiment 2	Experiment 3	Mean							
100	0.7	0.2	0.6								
200	1.0	0.8	1.0	0.93							
300	1.4	1.3	1.2	1.30							
400	1.6	1.6	1.6	1.60							
500	2.3	2.2	2.1	2.20							

(a) Calculate the mean volume of hydrogen produced using a current of 100 mA.
Use only reliable results. [1]

Mean volume of hydrogen = \dots cm³

(b) Describe the relationship between the current and the mean volume of hydrogen produced. [1]

(c) Use the results for a current of 300 mA and the following equation. Calculate the percentage error in these measurements. [2]

percentage error =
$$\frac{\text{furthest volume from mean volume} - \text{mean volume}}{\text{mean volume}} \times 100\%$$

Percentage error =%

			Examiner
(d)	Balance the following electrode equations showing the electrolysis of water.	[2]	only
	O^{2-} – $e^ O_2$		
<i>(e)</i>	In your opinion, do the advantages of using hydrogen as a fuel outweigh the disadvanta Give reasons to support your answer.	iges? [2]	
			Q

14 Examiner only 10. Aluminium is extracted using electrolysis. The diagram below shows the apparatus used. anode **(+) (+)** molten aluminium oxide cathode -Describe and explain how electrolysis can be used to extract aluminium from its ore. [6 QWC]

6


END OF PAPER

Question number	Additional page, if required. Write the question numbers in the left-hand margin.											
		······										
		· · · · · · · · · · · · · · · · · · ·										
		· · · · · · · · · · · · · · · · · · ·										
		1										

n	Additional page, if required. Write the question numbers in the left-hand margin.									
•••••										
ļ										
ļ										
ļ										
- 1										

FORMULAE FOR SOME COMMON IONS

POSITIV	VE IONS	NEGATI	VE IONS		
Name	Formula	Name	Formula		
Aluminium	Al ³⁺	Bromide	Br ⁻		
Ammonium	NH ₄ ⁺	Carbonate	CO_3^{2-}		
Barium	Ba ²⁺	Chloride	Cl ⁻		
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^{-}		
Copper(II)	Cu ²⁺	Hydroxide	OH^-		
Hydrogen	H^{+}	Iodide	I -		
Iron(II)	Fe ²⁺	Nitrate	NO_3^-		
Iron(III)	Fe ³⁺	Oxide	${{ m O}^{2-}} \ {{ m SO_4}^{2-}}$		
Lithium	Li^{+}	Sulfate	$\mathrm{SO_4}^{2-}$		
Magnesium	Mg^{2+} Ni^{2+}				
Nickel	Ni ²⁺				
Potassium	K ⁺				
Silver	$\mathbf{Ag}^{\mathbf{+}}$				
Sodium	Na ⁺				
Zinc	$\mathbb{Z}n^{2+}$				

PERIODIC TABLE OF ELEMENTS

								20								
0	⁴ He	Helium	$^{20}_{10}\mathrm{Ne}$	Neon	$^{40}_{18}{ m Ar}$	Argon	84 Kr 36 Kr	Krypton	¹³¹ Xe	Xenon	²²² ₈₆ Rn	Radon				
7			19 F	Fluorine	35 CI	Chlorine	⁸⁰ ₃₅ Br	Bromine	$^{127}_{53}I$	Iodine	²¹⁰ ₈₅ At	Astatine				
9			0 8 8	Oxygen	32 S 16 S	Sulfur	⁷⁹ ₃₄ Se	Selenium	128 Te	Tellurium	²¹⁰ ₈₄ Po	Polonium				
w			\mathbf{Z}_{r}^{41}	Nitrogen	31 P	Phosphorus	75 As	Arsenic	122 Sb	Antimony	209 Bi	Bismuth				
4			12 C	Carbon	28 Si	Silicon	73 Ge	Germanium	119 Sn	Tin	²⁰⁷ ₈₂ Pb	Lead				
m			11 B	Boron	²⁷ A1	Aluminium	70 Ga	Gallium	115 In	Indium	$^{204}_{81} Tl$	Thallium			lo	
					•		65 Zn	Zinc	112 Cd	Cadmium	²⁰¹ Hg	Mercury			Element Symbol	
							64 29 Cu	Copper	108 Ag	Silver	¹⁹⁷ Au	Gold			– Eleme	
							59 Ni	Nickel	106 Pd 46 Pd	Palladium	$^{195}_{78}\mathrm{Pt}$	Platinum			×	me
	H_1^1	Hydrogen					⁵⁹ Co	Cobalt	103 Rh	Rhodium	192 Ir	Iridium			<u></u>	Name
dno			'				56 Fe	Iron	101 44 Ru	Ruthenium	190 Os	Osmium			r	
Group							55 Mn	Manganese	99 Tc	Technetium	¹⁸⁶ ₇₅ Re	Rhenium			Mass number Atomic number	
							⁵² Cr	Chromium	⁹⁶ ₄₂ Mo	Molybdenum	184 W	Tungsten		Key:	Mass	
							51 V 23 V	Vanadium	93 Nb	Niobium	¹⁸¹ Ta	Tantalum				
							48 Ti	Titanium	$^{91}_{40}\mathrm{Zr}$	Zirconium	179 Hf	Hafnium				
							45 Sc	Scandium	$^{89}_{39}\mathrm{Y}$	Yttrium	139 La	Lanthanum	$^{227}_{89}$ Ac	Actinium		
7			⁹ ₄ Be	Beryllium	²⁴ Mg	Magnesium	⁴⁰ ₂₀ Ca	Calcium	88 38 Sr	Strontium	137 Ba	Barium	$^{226}_{88}\mathrm{Ra}$	Radium		
	ir.		7 Li	Lithium	23 Na	Sodium	39 K	Potassium	86 Rb	Rubidium	133 Cs	Caesium	$^{223}_{87}\mathrm{Fr}$	Francium		
	II .															

