Surname	Centre Number	Candidate Number
Other Names		0

GCSE

0240/01

ADDITIONAL SCIENCE FOUNDATION TIER CHEMISTRY 2

A.M. MONDAY, 21 May 2012

45 minutes

Suitable for Modified Language Candidates

For Examiner's use only				
Question	Mark Awarded			
1.	7			
2.	7			
3.	5			
4.	4			
5.	4			
6.	8			
7.	5			
8.	4			
9.	6			
Total	50			

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

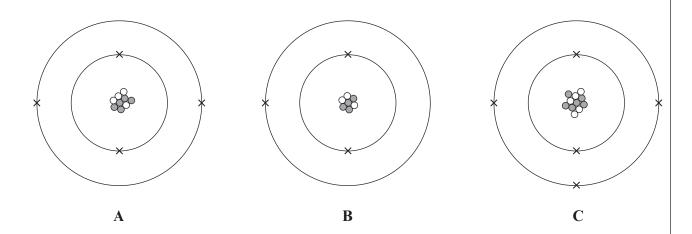
Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

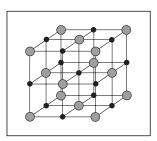
Answer all questions.

- 1. (a) Atoms are made up of protons, neutrons and electrons.
 - A, B and C represent atoms of three different elements.

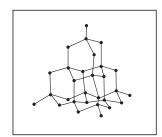
Give the **letter** of the atom which contains

(i)	four protons,	 [1]
\ /	1	

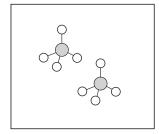
(ii) five electrons. [1]

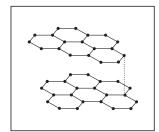

0240 010003

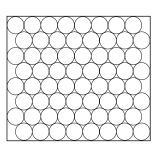
- (b) The following diagrams show the structures of some substances.
 - (i) Draw a line to connect **each** substance to its correct structure.


[4]

Substance

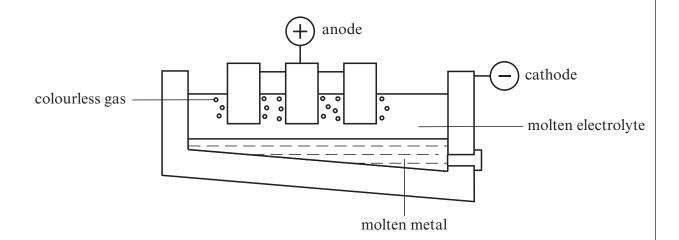

Structure


aluminium


methane

diamond

sodium chloride



(ii) Give the name of the substance which contains positive and negative ions.

[1]

Turn over.

2. (a) The diagram below shows the cell used in the industrial extraction of aluminium.

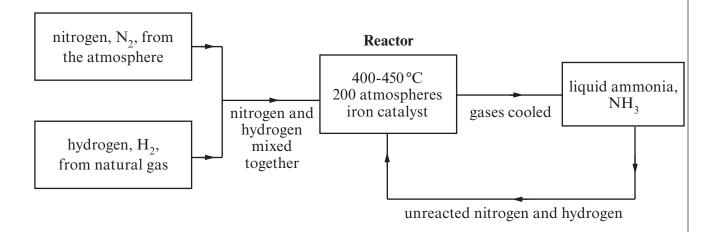
The molten electrolyte used in the process contains the ions $A1^{3+}$ and O^{2-} .

- (i) Give the chemical name for the molten electrolyte. [1]
- (ii) Name the electrode at which aluminium is formed. [1]
- (iii) Name the colourless gas formed during the process. [1]
- (b) The electrolyte is obtained from an ore called bauxite. Bauxite needs to be imported into the UK. The industrial extraction also needs a lot of electricity.

Which **two** factors are **most** important when locating a new aluminium extraction plant in the UK? Choose from the box below. [2]

coastal position	good transport system	nearby housing
nearby limestone quarries	nearby power station	nearby river for water

Factor 1


Factor 2

Some properties and uses of aluminium are given below.

Draw a line from each pair of properties to the use which relies on **both** of these properties.

properties.		
Pair of properties	Use	
heat conductor and malleable	drinks cans	
electrical conductor and ductile	overhead power cables	
malleable and non-toxic	cooking foil	

3. The flow chart below shows the stages in the manufacture of ammonia.

Use only the information in the flow chart to answer parts (a)-(c).

(a)	Name the raw materials from which nitrogen and hydrogen are obtained.	[1]
	Nitrogen	
	Hydrogen	

(b) The manufacture of ammonia is a reversible reaction.

Write a word equation for this reaction.	[2]

(c) The reaction mixture contains ammonia and unreacted nitrogen and hydrogen.

(i)	Describe what happens to ammonia gas on cooling.	[1]

(ii) Only about 20% of the nitrogen and hydrogen react to form ammonia. State what happens to the unreacted gases. [1]

5

Which type of smart material is used in each of the following items? Choose from the box.

(a) Battery test strips

[1]

Pressing both ends of the battery completes a circuit. This causes the strip to heat up and change colour. It shows if the battery is in good condition.

Smart material

(b) Water-absorbing granules

[1]

Some garden centres sell water-absorbing granules. They can be mixed with soil in plant pots. The granules absorb up to 100 times their weight in water. They then release it slowly back to the soil.

Smart material

(c) Nitinol stents for veins

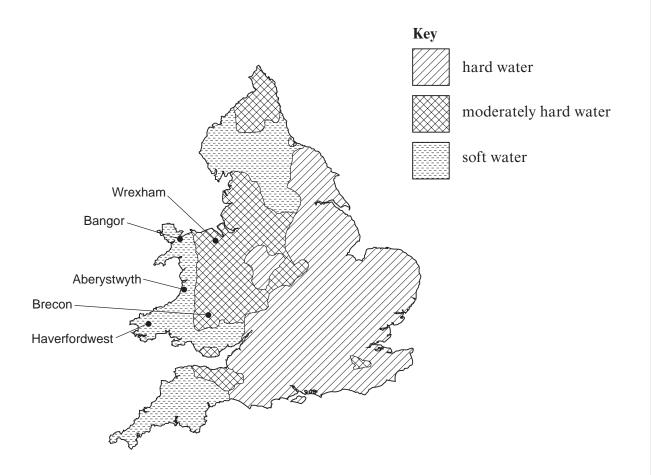
[1]

0240 010007

A collapsed nitinol stent can be inserted into a vein. When it is warmed up the stent returns to its original expanded shape. This helps to improve blood flow.

Smart material

(d) Lenses for sunglasses


[1]

Some lenses automatically darken when exposed to sunlight. They return to a lighter shade when the light intensity decreases.

Smart material

4

5. The map below shows the hardness of water across the different regions of Wales and England.

(a) Water samples were collected at Bangor, Brecon and Wrexham. 1 cm³ of soap solution was added to 10 cm³ of each sample in separate test tubes. Each tube was shaken for 10 seconds.

	What difference would you expect in the appearance of the shaken solutions in tube? Explain your answer.	each [3]
(b)	Give one way the procedure was made a fair test.	г11

[1]

6. (a) (i) Complete the following table to show the **structural** formula for propane.

Structural formula	H H—C—H H	H H		H H H H
Molecular formula	CH ₄	C_2H_6	C_3H_8	$\mathrm{C_4H}_{10}$
Name	methane	ethane	propane	butane

- (ii) A molecule of pentane contains 5 carbon atoms. Give the number of hydrogen atoms found in a molecule of pentane. [1]
- (b) Use the relative atomic masses given below. Calculate the relative molecular mass (M_r) of butane, C_4H_{10} . [2]

$$A_{\rm r}({\rm H}) = 1$$
 $A_{\rm r}({\rm C}) = 12$

$$M_{\rm r}({\rm C_4H_{10}}) = \dots$$

(c) Plastics have replaced many traditional materials.

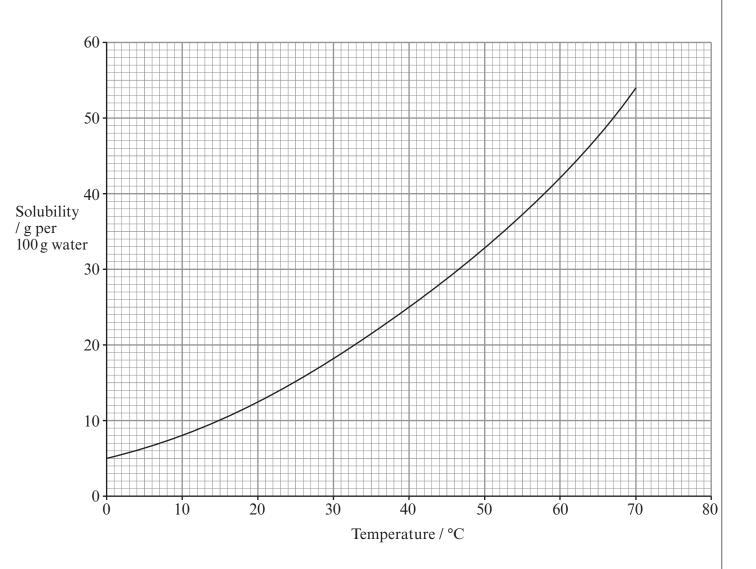
Give **two** general properties of a plastic which makes it a better material than the following. Do NOT use cost.

(i) paper for making carrier bags,

[2]

Property 1

Property 2


(ii) iron for making guttering.

[2]

Property 1

Property 2

7. The graph below shows the solubility of potassium dichromate in water at different temperatures.

The table below shows the solubility of potassium chloride in water at different temperatures.

Temperature / °C	0	20	40	60	80
Solubility / g per 100 g water	28	34	40	46	52

- - (ii) the **difference** between the solubilities of potassium chloride and potassium dichromate at 30 °C. [1]

Difference =g	per	100 g	of wate	:1
---------------	-----	-------	---------	----

5

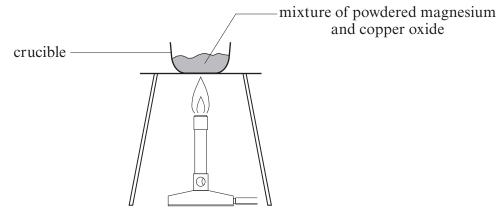
8. The table below shows information about the atoms of three elements.

Complete the table.

Use the data and key on the Periodic Table of Elements shown on the back page of this examination paper. [4]

Element	Symbol	Number of protons	Number of neutrons	Number of electrons
beryllium	⁹ ₄ Be	4		4
phosphorus		15	16	15
argon	⁴⁰ ₁₈ Ar		22	

9. (a) Copper, magnesium, silver and zinc were added separately to solutions containing copper nitrate, magnesium nitrate, silver nitrate and zinc nitrate.


The table shows the results obtained from the series of experiments.

	I			
Martal		Metal nitra	ate solution	
Metal	copper nitrate	magnesium nitrate	silver nitrate	zinc nitrate
copper	no reaction	no reaction	silvery-grey crystals form on copper foil	no reaction
magnesium	brown solid forms and blue solution turns colourless	no reaction	silvery-grey solid forms	silvery-grey solid forms
silver	no reaction	no reaction	no reaction	no reaction
zinc	brown solid forms and blue solution turns colourless	no reaction	silvery-grey solid forms	no reaction

(i)		ation in the table above. Place the metals copper, magnesium, seer of reactivity.	ilveı [2]
	Most reactive		
	Least reactive		
(ii)	Write a word ed	quation for the reaction between copper and silver nitrate.	[2]
	+	+	

and copper oxide

The apparatus in the diagram below can be used to show the violent reaction between *(b)* magnesium and copper oxide. Both solids are in **powdered** form and well mixed together.

After a few minutes of heating a violent reaction occurs. Tiny brown specks and a white powdery substance remain.

Use this reaction to explain the terms oxidation and reduction.	[2]

BLANK PAGE

FORMULAE FOR SOME COMMON IONS

POSITIV	VE IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	$\mathrm{NH_4}^+$	Carbonate	CO_3^{2-}
Barium	Ba^{2+}	Chloride	Cl ⁻
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^{-}
Copper(II)	Cu ²⁺	Hydroxide	OH^-
Hydrogen	H^{+}	Iodide	Ι -
Iron(II)	Fe^{2+}	Nitrate	NO_3^-
Iron(III)	Fe ³⁺	Oxide	O^{2-}
Lithium	Li^{+}	Sulphate	${{ m O}^{2-}} \\ {{ m SO_4}^{2-}}$
Magnesium	Mg^{2+}		·
Nickel	Mg^{2+} Ni^{2+}		
Potassium	\mathbf{K}^{+}		
Silver	$\mathbf{Ag}^{\boldsymbol{+}}$		
Sodium	Na ⁺		

PERIODIC TABLE OF ELEMENTS

1	7					Gro	roup					8	4	w	9	L	0
								¹ H Hvdrogen									⁴ He Helium
7 Li	⁹ ₄ Be						_				<u> </u>	11 B	12 C	$\frac{14}{N}$	0 8 16	19 F	$^{20}_{10}\mathrm{Ne}$
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
23 Na	24 Mg										-1	27 A1	28 Si	31 P	32 S 16 S	35 CI	40 Ar
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
39 K	40 Ca	45 Sc	48 Ti	51 V 23 V	52 Cr	55 Mn	56 Fe	⁵⁹ Co	59 Ni	64 Cu	65 Zn	⁷⁰ Ga	73 Ge	75 As	79 Se	80 Br	84 Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
86 Rb	88 38 Sr	$\mathbf{Y}_{99}^{89}\mathbf{Y}$	$^{91}_{40}{ m Zr}$	93 Nb	% Mo	99 Tc	101 44 Ru	103 Rh	106 Pd 46 Pd	108 Ag	112 Cd	115 In	119 Sn	122 Sb	128 Te	I 221 I	131 Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium Molybdenum	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
¹³³ Cs	137 Ba	139 La	179 Hf	¹⁸¹ Ta	184 W	¹⁸⁶ ₇₅ Re	190 OS	¹⁹² ₇₇ Ir	195 Pt	¹⁹⁷ Au	$^{201}_{80} { m Hg}$	$^{204}_{81} \mathrm{Tl}$	²⁰⁷ ₈₂ Pb	²⁰⁹ Bi	²¹⁰ ₈₄ Po	²¹⁰ ₈₅ At	²²² ₈₆ Rn
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
$^{223}_{87}{ m Fr}$	²²⁶ Ra ⁸⁸ Ra	$^{227}_{89}$ Ac				•											
Francium	Radium	Actinium			Key:												
					Mass	Mass number	<u>.</u>	_ <u></u>									
									\times	– Eleme,	Element Symbol	loo					
					Aton	Atomic number	Der —	<u>Z</u>									