Centre No. Paper Reference (complete below)		Initial(s)
Candidate No. Signature			
Paper Reference(s)	F-	, ,	
1522/5H 1530/3H	Exam	niner's us	e only
Edexcel GCSE	Team I	Leader's L	ice only
Science: Double Award A [1522]			ise only
Paper 5H			
Chemistry A [1530]		Question Number	Leave Blank
Paper 3H		1	
Higher Tier		2	
Monday 14 June 2004 – Morning		3	
Time: 1 hour 30 minutes		4	
Materials required for examination Items included with question papers		5	
Nil Nil		6	
		7	
Instructions to Candidates		8	
In the boxes above, write your centre number, candidate number, the paper reference, your surname initial(s) and signature. The paper reference is shown above. If more than one paper reference is shown, you should write t		9	
one for which you have been entered. Answer ALL questions in the spaces provided in this book.			
Show all stages in any calculations and state the units. Calculators may be used. Include diagrams in your answers where these are helpful.			
Information for Candidates			
The marks for the various parts of questions are shown in round brackets: e.g. (2). This paper has nine questions. There is one blank page.			
Advice to Candidates			
This symbol shows where the quality of your written answer will also be assessed.			

N18354A

Edexcel
Success through qualifications

Total

1	2
	=
	2
Ć	5

5

Helium	Neon	Argon	18 84 Krypton 36	Xe Xenon	54 222 Radon 86	
	Fluorine	35.5 CI Chlorine	Bromine	I27 I lodine		
	16 Oxygen	-	Selenium	1	Polonium 84	
	Nitrogen		Arsenic		Bismuth	
		Silicon	73 Ge Germanium 32	Sn	Pb Lead	
	Boron	A1 Aluminium	Gallium	II5 In Indium	TI Thallium	
			65 Zn Zinc 30	Cd Cadmium	Hg Mercury	
			63.5 Cu Copper 29	Ag Silver	Au Gold	
			Nickel	Palladium	Pt Platinum 78	
			S9 CO Cobalt 27	Rh Rhodium	IP2 Ir Iridium	
Hydrogen			1	Z. Ju	OS Osmium 76	
			Mn Manganesc	TC Technetium	Rhenium	
			Cr Chromium	$\stackrel{96}{\mathrm{M}0}$ Molybdenum	184 W Tungsten 74	
			51 Vanadium 23	Nobium	Tantalum 73	
				Zr Zirconium 40	Hf Hafnium 72	
			Scandium 21	Y Yttrium 39	La Lanthanum Ht. 57	<
	9 Beryllium	Mg Magnesium	Calcium	Strontium	Barium 56	Pa
	Lithium	Na Sodium	39 K	Rb Rubidium	CS Caesium 55	Ţ
Period 1	7	8	4	w	9	1

Relative atomic mass Symbol

Atomic number

	relative mass	relative charge	position in an atom	
electron	negligible		orbiting the nucleus	
neutron	1		in the nucleus	
proton		+1		
				(4)
se the periodic	table to help you give	ve the electronic stru	cture of	
	n			
				
magnesium ato	om			
				(3)
			ect beryllium and magne	(3)
	from part (b), explair	n why you would exp		(3) sium
have similar o	from part (b), explair chemical reactions.	n why you would exp	pect beryllium and magne	(3) sium
have similar o	from part (b), explair	n why you would exp	pect beryllium and magne	(3) sium
have similar o	from part (b), explair chemical reactions.	n why you would exp	pect beryllium and magne	(3) sium (1)
an atom of fluo	from part (b), explain chemical reactions. rine has an atomic nuprotons are in this atomic	n why you would exp umber of 9 and a mas	pect beryllium and magne	(3) sium
an atom of fluo	from part (b), explair chemical reactions.	n why you would exp umber of 9 and a mas	pect beryllium and magne	(3) sium (1)

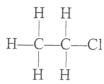
1. (a) Complete the table to show the relative mass, relative charge and position in an atom of

an electron, neutron and proton.

TURN OVER FOR QUESTION 2

(Total 10 marks)

Leave blank


2.	(a)	Titanium is a hard, lustrous, silvery metal. It is found in the central section of th periodic table.	e
		What name is given to metals in this section of the periodic table?	
		(1	
	(b)	Titanium is a lightweight metal which does not corrode. It is able to withstand extrem temperatures. It is as strong as steel and twice as strong as aluminium but much more expensive than these metals.	
		Suggest a commercial use for titanium.	
		(1	
	(c)	Titanium powder burns in air to form titanium(IV) oxide, TiO ₂ .	
		Write the balanced equation for this reaction.	
		(2	(2)
	(d)	Titanium(IV) oxide, TiO ₂ , is formed by combination of titanium and oxygen atoms.	
		(i) In the formation of titanium(IV) oxide each titanium atom loses four electrons.	
		What is the formula of the titanium particle produced?	
		(1	
		(ii) In the formation of titanium(IV) oxide each oxygen atom gains two electrons.	
		What is the formula of the oxygen particle produced?	
		(1	(
		(iii) The electronic structure of an oxygen atom is 2.6.	
		Write the electronic structure of the oxygen particle formed in titanium(IV) oxide	
		(1	
		(iv) What type of bonding is present in titanium(IV) oxide?	
		(1	(
		(Total 8 marks	6)

118354A

•	En	vironmental problems can be caused by our use of plastic.	Leave
	fro	ousands of tonnes of plastic waste are thrown away each year. Plastic items are made m polymers. Chemists have found a way of breaking down some polymer molecules into monomers from which they were made. Energy is used in this process.	
	(a)	Name an item that is made from a plastic and state the property of the plastic that makes it suitable.	
		item	
		property(2)	
	(b)	What is a polymer?	
В			
		(3)	
	(c)	There are advantages and disadvantages of breaking down polymers into monomers.	
		(i) State two advantages of breaking down polymers into monomers.	
		1	
		2(2)	
		(ii) State one disadvantage of breaking down polymers into monomers.	
		(1)	Q3
		(Total 8 marks)	

TURN OVER FOR QUESTION 4

 \mathbf{X}

Y

(a) (i) Which of these molecules are hydrocarbons?

(1)

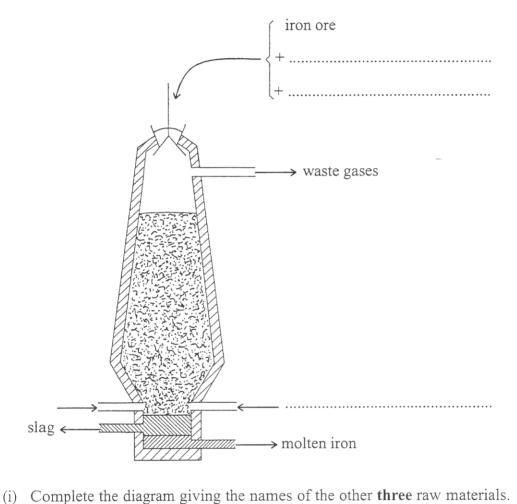
(ii) Explain your answer.

(1)

(b) Which molecule is the main constituent of natural gas?

(1)

(c) Name molecule Z.

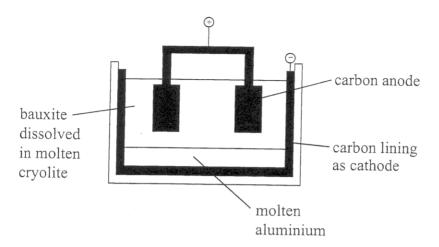

(1)

Q4

(Total 4 marks)

(a)	What is meant by reduction?	
		(1)

(b) The diagram shows a blast furnace used for the extraction of iron from iron ore.


		(3)
(ii)	Name the gas that reduces the iron ore.	
		(1)
(iii)	Give one use of slag.	
		(1)

QUESTION 5 CONTINUES ON NEXT PAGE

(c) The following diagram shows the cell in which aluminium is extracted from bauxite by electrolysis. Electricity is passed through a mixture of bauxite dissolved in molten cryolite.

Leave blank

(3)

(i)	A mixture of bauxite dissolved in molten cryolite rather than molten bauxite is used in the electrolysis cell.
	Explain why.
	(2)
	(2)
(ii)	The anodes, which are made of carbon, have to be replaced each month.
	Explain why.

(d)	1) The approximate prices per tonne of aluminium and iron are		
	aluminium	£800	Leave blank
	iron	£80	
	Explain why aluminium is more expens	sive than iron.	
		(4)	Q5
		(Total 15 marks)	

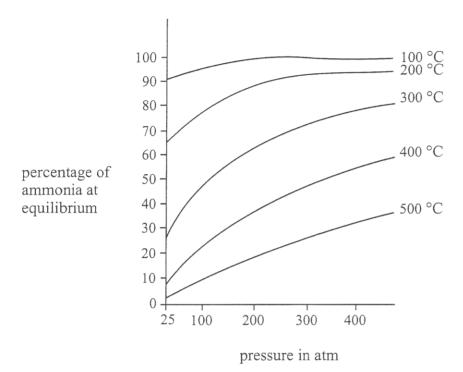
TURN OVER FOR QUESTION 6

18354A

Turn over

7.	(a)	D	raw a dot and cross diagram of a molecule of carbon dioxide.	Leave
		SI	now the outer electrons only.	blank
			·	
			(3)	
	(b)	Na dic	me and describe the type of bonding that holds the atoms together in the carbon exide molecule.	
			(2)	
((c)	(i)	When propane, C ₃ H ₈ , is burnt completely in air, carbon dioxide is one of the products.	
			Write the balanced equation for the reaction.	
		<i>(</i> • • • •	(3)	
	((11)	Propane is used as a fuel in some room heaters. There is a safety hazard if propane is burnt in a limited supply of air.	
			Explain this hazard.	
				Q 7
			$(2) \mid$	
			(Total 10 marks)	

TURN OVER FOR QUESTION 8


11

8. Ammonia is made from nitrogen and hydrogen in the Haber process. The reaction is exothermic.

Leave blank

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The graph shows the variation in the percentage of ammonia present at equilibrium with increasing pressure at various temperatures.

(a) (i) Using the graph, state what happens at 300 °C to the percentage of ammonia present at equilibrium as the pressure is increased.

(1)

(ii) Suggest a disadvantage of operating the process at high pressures.

(1)

(b) Using the graph, state what happens at 250 atm to the percentage of ammonia present at equilibrium as the temperature is increased.

.....

(c)	In terms of reacting particles, explain why the rate is faster at higher temperatures.	Leave blank	
(d)	When ammonia is neutralized by cultibrate and the factor is a set of the factor.		
(u)	When ammonia is neutralised by sulphuric acid, the fertiliser ammonium sulphate, $(NH_4)_2SO_4$, is formed.		
	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$		
	(Relative atomic masses: $H = 1.0$; $N = 14$; $O = 16$; $S = 32$)		
	(i) Calculate the relative formula mass of ammonium sulphate.		
	(ii) Colculate the maximum mass of any in the state of th		
	(ii) Calculate the maximum mass of ammonium sulphate that could be formed from 100 tonnes of ammonia.		
`	(3)		
	Farmers carefully control the amount of fertiliser applied to the soil.		
	Suggest why.		
	(2)	Q8	
	(Total 12 marks)		

354A

13

Turn over

9. The table gives the boiling points of the noble gases.

Leave blank

noble gas	atomic symbol	boiling point (°C)
helium	Не	-269
neon	Ne	-246
argon	Ar	-186
krypton	Kr	-152
xenon	Xe	-107

	(1)
(a)	Describe how the boiling points of the noble gases vary with atomic number.

(b) Neon has two isotopes.

isotope	atomic number	mass number	percentage abundance
neon-20	10	20	90.9
neon-22	10	22	9.1

(i)	In terms of particles in the atoms, explain how the two isotopes differ.	
		(1)
(ii)	Using the data, calculate the relative atomic mass of neon.	
	· · · · · · · · · · · · · · · · · · ·	
		(2)

14

(c)	Explain why the noble gases are unreactive.	1 7 7	eave
			ank
	(2)		
(d)	Under certain conditions xenon can be made to react with fluorine to form a crystalline compound, xenon fluoride.		
	In the preparation of xenon fluoride, it was found that 26.2 g of xenon formed 49.0 g of xenon fluoride.		
	Calculate the empirical formula of xenon fluoride.		
	(Relative atomic masses: $F = 19.0$, $Xe = 131$)		
	(4)		
e)	Under different conditions another fluoride of xenon, XeF ₄ , also forms as a crystalline solid in equilibrium with its elements.		
	Write the balanced equation for this equilibrium, including state symbols.		
	(4)	Ç	9
	(Total 14 marks)		
	TOTAL FOR PAPER: 90 MARKS		

END