Surname			Othe	r Names			
Centre Numb	per			Candid	ate Number		
Candidate Si	ignature						

General Certificate of Secondary Education June 2006

SCIENCE: SINGLE AWARD B (CO-ORDINATED) 3463/3F Paper 3 Foundation Tier

Friday 16 June 2006 9.00 am to 9.45 am

For this paper you must have:

• a ruler

You may use a calculator.

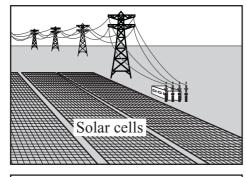
Time allowed: 45 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want marked.

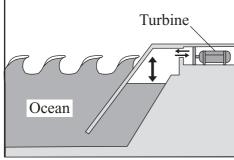
Information

- The maximum mark for this paper is 45.
- The marks for questions are shown in brackets.
- You are reminded of the need for good English and clear presentation in your answers.

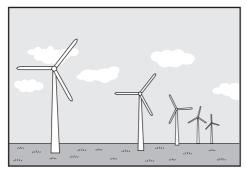

For Examiner's Use				
Number	Mark	Number	Mark	
1		5		
2		6		
3		7		
4				
Total (Column 1)				
Total (Column 2) —				
TOTAL				
Examiner's Initials				

Answer all questions in the spaces provided.

1 (a) The diagrams show four types of power station. Each one uses a different energy resource to generate electricity.

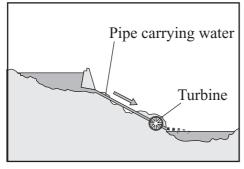

Draw straight lines to link each power station to its energy resource. Draw only **four** lines.

Power station



Energy resource

Falling water



Geothermal

Sunlight

Wind

(4 marks)

(b)		al-burning power station generates 1000 million watts of power. A solar on generates 250 million watts of power.	power
	How statio	many solar power stations would be needed to replace one coal-burning on?	power
	•••••		(1 mark)
(c)	Elec	tricity is generated at nuclear, coal or natural gas power stations.	
	(i)	Which one of these power stations does not produce any waste gases?	
			(1 mark)
	(ii)	Which one of these power stations has the shortest start-up time?	
			(1 mark)

Turn over for the next question

2 (a) The diagram shows a person using a sunbed.

(i) Which type of radiation is used in a sunbed to give a suntan?Draw a ring around your answer.

	infra red	light	microwave	ultraviolet	(1 mark)
(ii)	What can a high	dose of radiat	ion from a sunbed do	to living cells?	
					(1 mark)

1	(h)	The how	contains the	e information	chossyn on	the side of	o gunhad
١	U	THE DOX (zonianis un	mionianon	SHOWH OH	me side of	a sumbeu.

230 V 1.8 kW 50 Hz 7.8 A

(i)	Which one of the following statements is true? Put a tick (\checkmark) in t your choice.	he box next to
	The sunbed uses an alternating current (a.c.) electricity supply.	
	A 5 amp fuse should be used in the plug of the sunbed.	

The sunbed transfers 1.8 joules of energy every second.	

(1 mark)

(ii) In one week the sunbed is used for a total of 6 hours.

Use the following equation to calculate the number of units of energy transferred by the sunbed in 6 hours.

Show clearly how you work out your answer.

Energy transferred = kWh
(2 marks)

5

3	(a)	Read the following statements.

 \mathbf{J} – It is made up of at least a billion galaxies.

 $\mathbf{K}~-~$ It is one of the stars in the Milky Way.

L - It is a slightly squashed circle.

 $\mathbf{M}-\mathbf{It}$ keeps the Moon in orbit around the Earth.

N - It is a large number of stars grouped together.

O – It is the explosion of a massive star.

Which statement, J, K, L, M, N or O, describes:

(i)	the force of gravity;	Letter(1 mark)
(ii)	the Sun;	Letter(1 mark)
(iii)	the Universe;	Letter(1 mark)
(iv)	a supernova?	Letter(1 mark)

(b)	The	e Sun is in the main stable stage of its lifecycle.					
	(i)	How long will the Sun be in this stage of its lifecycle? Put a tick (✓) in the box next to your choice.					
		Hundreds of years					
		Thousands of years					
		Millions of years					
		Billions of years					
		(1 mark)					
	(ii)	Describe what will happen to the Sun after it has reached the end of the main stable stage of its lifecycle. The answer has been started for you.					
		At the end of the stable stage of its lifecycle the Sun will expand					
		(3 marks)					
		(3 marks)					

Turn over for the next question

4~ (a) The diagrams, $A,\,B$ and C, represent three different nuclei.

Diagram A	Diagram B	Diagram C
(+) (+)	(+)	\oplus
2 protons 🕀	3 protons 🕀	2 protons 🕀
4 neutrons 🔾	3 neutrons 🔾	2 neutrons 🔾
(ii) Which two nu	aclei are isotopes of the same eleme and	(1 mark)
(iii) Give a reason	for your choice of answer to part (a	, , ,
••••••		(1 mark)

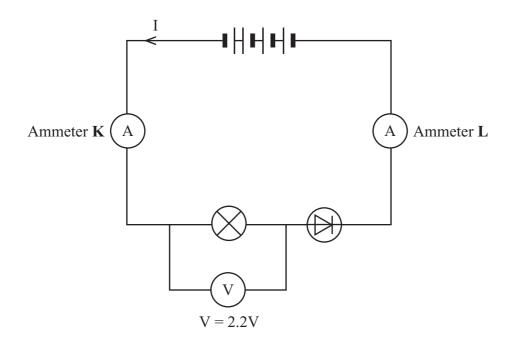
(b) The tables below give examples of some stable nuclei and some unstable nuclei.

Stable nuclei	Unstable nuclei
boron-11	boron-12
carbon-12	carbon-14
oxygen-16	oxygen-15
lead-207	lead-209

(i)	Write down, from the tables, the names of two radioactive nuclei.	
	and	
		(1 mark)
(ii)	Write down, from the tables, the names of two non-radioactive nuclei.	
	and	
		(1 mark)

(c) Complete the following sentence by crossing out the **two** words in the box that are wrong.

The lungs of a person who has breathed in a radioactive gas will be most


damaged if the gas gives out beta radiation.

(1 mark)

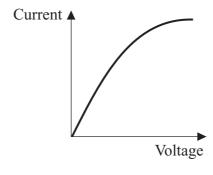
(K)

Turn over for the next question

5 The diagram shows how a student joined several components, including a 6-volt lamp and four identical 1.5 volt cells, in a circuit.

(a)	The reading on	ammeter	K	is	0.05 A
(a)	The reading on	annicul	77	13	0.05 71.

What is the reading on ammeter L?


(1 mark)

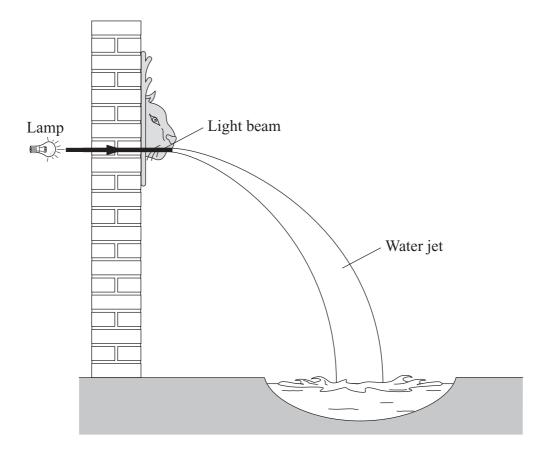
- (b) The student expected the lamp in the diagram to be much brighter and the reading on the voltmeter to be 6 volts.
 - (i) Give **two** reasons why the reading on the voltmeter is much less than 6 volts. The voltmeter is working correctly.

1						
••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••
2						
<i></i>	• • • • • • • • • • • • • • • • • • • •	••••••		•••••	•••••	••••
•••••	•••••	•••••		•••••	(2 mar	

(ii) The student decides that the lamp is dim because the diode is connected				
	wrong way round. When the student reverses the connections to the diode the			
	lamp goes out.			

(c) The graph shows how the current through a filament lamp changes as the voltage (potential difference) across it changes.

Explain why the graph is not a straight line.


To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.				
(4 marks)				

6 (a) The diagram shows water waves made by a wave machine in a swimming pool.

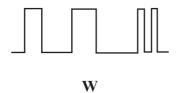
In 10 seconds 5 complete waves go past a person standing in the pool.
Calculate the frequency of the water waves and give the unit.
Show how you work out your answer.
Frequency =(2 mark
Water waves are transverse waves.
Give one other example of a transverse wave.
(1 ma)
diagram to help you with your answer.

(d) The diagram shows a garden fountain. The fountain features a light beam that is totally internally reflected by the water jet.

- (i) Draw the path of the light beam through the water jet. (1 mark)
- (ii) Complete the following sentence by crossing out the **two** lines in the box that are wrong.

For light to be totally internally reflected the angle between the light ray and the

normal must be smaller than equal to bigger than the critical angle.


(1 mark)

7 Converting sound waves into electrical signals allows information to be sent over long distances.

The diagram shows three analogue signals and one digital signal.

(a) Which signal, U, V, W or X, is the digital signal?

Give a reason for your choice.	
	(2 marks)

(b) Give **one** advantage of sending information as a digital signal instead of as an analogue signal.

(1 mark)

(1 mark)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page