| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Secondary Education Foundation Tier November 2012 # Science B SCB2FP Unit 2 My Family and Home F Written Paper Wednesday 7 November 2012 9.00 am to 10.00 am #### For this paper you must have: - a ruler - a calculator - the Equations Sheet (enclosed). #### Time allowed • 1 hour #### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. - Do all rough work in this book. Cross through any work you do not want to be marked. #### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 60. - You are expected to use a calculator where appropriate. - You are reminded of the need for good English and clear presentation in your answers. - Question 9 should be answered in continuous prose. - In this question you will be marked on your ability to: - use good English - organise information clearly - use specialist vocabulary where appropriate. #### **Advice** In all calculations, show clearly how you work out your answer. | For Examiner's Use | | | | | | | |--------------------|--------------|--|--|--|--|--| | Examine | r's Initials | | | | | | | Question | Mark | | | | | | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | TOTAL | | | | | | | ## Answer all questions in the spaces provided. - 1 Acids are found in laboratories and have to be used carefully. - 1 (a) Which two hazard labels are used on bottles of acid? Tick (✓) **two** answers. (2 marks) | 1 (b) | Give two safety precautions a scientist should take when using acids. | |-------|---| | | 1 | | | | | | 2 | | | (2 marks) | | | These questions are about electromagnetic radiation. | | | | | |---|--|---|---|--|---| | Draw a ring around the correct answer in the box to complete each sentence. | | | | | | | Electromagnetic radiation | | | | | | | The frequency of electroma | agnetic radiation is measure | | | second. | mark) | | The energy of a wave incre | eases when the frequency | increa | ases. | (1 | mark) | | Give the type of electromage | gnetic radiation used in tele | vision | remote cont | • | marky | | Gamma radiation is not us Give the reason why. | ed in the home. | | | (1 | mark) | | | | | | (1 | mark) | | | The frequency of electroma The energy of a wave incre Give the type of electroma Gamma radiation is not us | transfers energy from place travels as particles through travels only in a vacuum. The frequency of electromagnetic radiation is measured. The energy of a wave increases when the frequency. Give the type of electromagnetic radiation used in teles. Gamma radiation is not used in the home. | transfers energy from place to ple travels as particles through space travels only in a vacuum. The frequency of electromagnetic radiation is measured in decreases when the frequency increases stays. Give the type of electromagnetic radiation used in television | transfers energy from place to place. travels as particles through space. travels only in a vacuum. The frequency of electromagnetic radiation is measured in metres per miles per house. The energy of a wave increases when the frequency decreases. Increases. Inc | transfers energy from place to place. travels as particles through space. travels only in a vacuum. (1 The frequency of electromagnetic radiation is measured in metres per second. miles per hour. (1) The energy of a wave increases when the frequency increases. stays the same. (1) Give the type of electromagnetic radiation used in television remote controls. (1) Gamma radiation is not used in the home. Give the reason why. | Metals have many useful properties.Use the correct answer from the box to complete each sentence. | hard | d ductile | malleable | corrosion resistant | a good conductor | |-------|--------------------|-------------------|-----------------------|------------------| | 3 (a) | Aluminium window | w frames do not | need painting because | | | | aluminium is | | | (1 mark) | | 3 (b) | An electric curren | t passes throug | h copper because | , , , | | | copper is | | | (1 mark) | | 3 (c) | Iron can be made | into thin wires I | pecause | | | | iron is | | | (1 mark) | | 3 (d) | Lead can be ham | mered into diffe | rent shapes because | | | | lead is | | | | | | | | | (1 mark) | | 4 | This question is about energy. | | | | | |-------|---|------------------------|------------|-------------|------------| | 4 (a) | Draw one line from each quantity to the unit the quantity is measured in. | | | | sured in. | | | Quantit | y | | Unit | | | | | | | joules | | | | energy | | | | | | | | | | volts | | | | power | | | | _ | | | | | | watts | | | | | | | | (2 marks) | | 4 (b) | Draw a ring around th | e correct answer to co | omplete t | he sentence | Э. | | | | 1 joule per hour. | | | | | | One watt is equal to | 1 joule per minute. | | | | | | | 1 joule per second. | | | | | | | | | | (1 mark) | | 4 (c) | An electric fire was tu | rned on for 5 hours ar | nd used 1 | 0 kWh of el | ectricity. | | | Calculate the power of | of the fire. | | | | | | Use the Equations Sh | neet to help you answe | er the que | estion. | | | | Give the correct unit. | Powe | er = | (2 marks) | | | | | | | | | 5 | The fuels used to power cars often contain molecules made of carbon and hydronly. | rogen | |-------|---|----------| | 5 (a) | Complete the sentence. | | | | Molecules made of carbon and hydrogen only are | | | | called | (1 mark) | | 5 (b) | The table gives some information about the energy in fuels. | | | Fuel | Average number of carbon atoms in the fuel molecules | Energy content in MJ per litre | |-------------------------|--|--------------------------------| | Liquefied petroleum gas | 3.5 | 26 | | Petrol | 8 | 35 | | Diesel | 12 | 40 | Use the information in the table to answer the questions. | 5 (b) (i) | Describe the pattern shown in the table between average number of carbon atoms in the fuel molecules and the energy content per litre. | |-----------|--| | | | | | | | | | | | | | | (2 marks) | | 5 (b) | (ii) A car engine usefully transfers only 40% of the energy in one litre of petrol. | | |-------|---|------| | | The equation shows how to calculate the energy in a fuel that is usefully transferred. | | | E | nergy usefully transferred (MJ) = percentage transferred × energy content per litre (MJ) 100 | | | | Calculate the energy usefully transferred from one litre of petrol. | | | | | | | | Energy usefully transferred =(2 mai | | | 5 (b) | (iii) Most energy that is not usefully transferred is wasted. | | | | Complete the sentence. | | | | Most energy is wasted as(1 ma | ark, | | | Question 5 continues on the next page | | **5 (c)** A diesel engine transfers 60 MJ of energy from some fuel to a car. The Sankey diagram shows what happens to this energy. Use the Sankey diagram to help you answer the questions. | 5 (C) (I) | Calculate now much of the energy transferred to the car is wasted. | |------------|---| | | | | | Energy wasted = MJ (2 marks) | | 5 (c) (ii) | Calculate how efficient the car is in using the total energy from the diesel fuel for movement. | | | Use the Equations Sheet to help you answer the question. | | | | | | | | | Efficiency =(2 marks) | | | | **5 (d)** The graph shows how the speed of a car affects the distance travelled per gallon of fuel used. | 5 (d) (i) | Describe how the speed of the car affects the miles travelled per gallon. | Use data from | |-----------|---|---------------| | | the graph in your answer. | | |
 | | |------|-----------| |
 | | |
 | | |
 | (2 marks) | **5 (d) (ii)** The government is thinking of increasing the speed limit on UK motorways from 70 miles per hour to 80 miles per hour. Some people think this is a bad idea. | Suggest two reasons why people think this is a bad idea. | | |---|---| | | • | | | • | | | • | (2 marks) 14 | | | | (1 mark) | |-------|--|--------------------------|--------------------------------------| | | the powder would dissolve | the powder would fizz | the powder
would change colour | | | How would the student know acid? Draw a ring around the | | ium carbonate when he added the | | | The student forgot to label his | s powders. | | | | white. | 2 | - p. 1.22.1 511. pe 1.25.0 d. 0 | | 6 (c) | A student was doing some procalcium carbonate powder an | _ | ate the reaction of dilute acid with | | | Oxygen | | (3 marks) | | | Hydrogen | | | | | Water | | | | | Carbon dioxide | | | | | Calcium chloride | | | | | Calcium oxide | | | | | Tick (✓) the three correct pro | ducts of this reaction. | | | | Calcium carbonate reacts with | n dilute hydrochloric ac | id. | | 6 (b) | Some antacids contain calcium | m carbonate. | | | | | | (1 mark) | | 6 (a) | Give the name of the reaction between acids and alkalis. | | | | | Antacids can be made from a | Ikalis and carbonates. | | | 6 | If a person has excess acid in could take an antacid to reduce | _ | n suffer from heartburn. They | | 7 | A scientist studied two differences in a group of 100 children. | | |-------|---|-----------| | 7 (a) | Difference 1 was the height of each child. | | | | Give the word that describes the differences seen in a group of children. | | | | | (1 mark) | | 7 (b) | Suggest two variables the scientist should keep the same in the study. | | | | 1 | | | | 2 | | | | | (2 marks) | | 7 (c) | Difference 2 was whether the child could taste a chemical called PTC. | | | | To some people PTC tastes bitter. To other people PTC has no taste. | | | | The ability to taste PTC is controlled by a gene. | | | | What is the name given to different forms of the same gene? | | | | | | | | | (1 mark) | 7 (d) (i) A man and a woman can both taste PTC. They have a child who can **not** taste PTC. The two forms of the gene are \boldsymbol{T} and \boldsymbol{t} . The **T** form of the gene allows people to taste PTC. Complete the Punnett square for the inheritance of tasting PTC. ### Mother | | | т | t | | |--------|---|---|----|--| | Father | Т | | Tt | | | | t | | | | (2 marks) **7 (d) (ii)** Draw a ring around **one** child in your completed Punnett square who will **not** be able to taste PTC. (1 mark) **Photograph 1** shows part of a pylon used to support electricity cables of the National Grid. Electricity is carried at very high voltage along the cables. Photograph 1 **8 (a)** The table gives information about some metals. | | Steel | Copper | Aluminium | Titanium | |---|-------|--------|-----------|----------| | Mass in grams per cm ³ | 7.9 | 8.9 | 2.7 | 4.5 | | Strength in units | 18 | 4.5 | 4.0 | 21 | | Ability to conduct electricity in units | 1.1 | 6.5 | 4.1 | 0.5 | | Cost per tonne in £ | 530 | 7061 | 2109 | 6200 | Use the information in the table to answer the questions. | 8 (a) (i) | Steel is a good metal for making the pylon. | |------------|---| | | Suggest two reasons why. | | | 1 | | | | | | 2 | | | (2 marks) | | 9 (a) (ii) | | | o (a) (ii) | The cables used in the picture are made from aluminium. | | | Suggest one advantage and one disadvantage of using aluminium instead of copper for the cables. | | | Advantage | | | | | | Disadvantage | | | (2 marks) | | 8 (b) (i) | The hanger is made from a ceramic material. | | | Suggest why. | | | | | | | | | (1 mark) | | 8 (b) (ii) | The pylon is not made from a ceramic material. | | | Suggest why. | | | | | | (1 mark) | | | () | | | | | | Question 8 continues on the next page | | | | **8 (c) Photograph 2** is an enlarged picture of a ceramic hanger. Use **Photograph 2** to help you answer the questions. ## Photograph 2 The hanger is made of separate discs. The number of discs needed in the hanger increases as the voltage in the cable increases. | The cables in the photograph carry 165 kV. | |---| | Calculate the number of discs needed in a hanger for cables carrying 390 kV. | | | | | | | | Answer disc:
(3 marks | | The high voltage in the overhead cables is stepped down to 230 volts to supply houses | | Give the name of the equipment that 'steps down' the voltage. | 10 (1 mark) 8 (d) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate. The human body needs to keep a constant internal environment. An athlete goes for a training run for 30 minutes. | Explain how the athlete's body responds to get her core temperature back to normal. | |---| (6 marks) | **END OF QUESTIONS**