

	Cer	ntre Nu	umber

Candidate Number

General Certificate of Secondary Education 2014

GCSE Physics

Unit 1

Higher Tier

[GPH12]

GPH12

THURSDAY 12 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper.

Complete in blue or black ink only. **Do not write in pencil or with a gel pen**. Answer **all six** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question **1(a)(iii)** and Question **3(a)(v)**.

8586.05**R**

this race.	Marks Remark
You are advised to show clearly how you get your answer.	
(ii) Explain why 10.44 m/s is his average speed.	
i86.05 R	

(iii) To detect speeding motorists speed cameras are located on	
the roadside. One type of speed camera measures the average speed of a motorist.	Marks Remark
The diagram below represents the layout of the system.	
Speed camera 1 Speed camera 2	
Direction in which car travels	-
Explain carefully and in detail how this system of speed cameras measures the average speed of a car.	3
In this question you will be assessed on your written communication skills including the use of specialist terms.	
	_
	_
	-
	_
	_
	-
	[6]
8586.05 R	[Turn over

D Q

32GPH1204

-	Reactions	
 A	Ð	
Hannard I	Committy -	
init:	itimating	
Thermostin	Lawring	
D	Œ	
Ø.	Ð	
5	(A=	
Royardo	a Lemminy	
Ð	Œ	
G.	Ð	
9	GE	
0	Thursday I	
Russault	County	
Ð	œ	
a	Ð	
Ð	Œ	
2	Theorem	
3		
3	Œ	
a	Ð	
Ð	Ge	
R	DA	
Revertion	y Lowmany	
anne.	(CEE	
Revention	E LANTING	
Ð	Œ	
G	22	
5	Casenby	
	Alexand I	
Flowerski	E Lawring	
Ð	œ	
a	Ð	
5	(d=	
inter inter	There are a second	
in and	E	
Ð	Œ	
a	Ð	
D	G=	
anny C	20	
Revertin	Country	
3	œ	
a	20	
Ð	Œ	
R	29	
Formertin	Lumity	
2	a	
Reinardin	E Laming	
Ð	Œ	
G	20	
Abanation Contraction	(G=	
	Renative	
a	E	
D	Œ	
G	Ð	
Ð	(E=	
in a	30	
Residently	c	

	(ii)	Calculate the deceleration of the car after the brakes have been applied.	Examiner Only Marks Remark
		You are advised to show clearly how you get your answer.	
		Deceleration = $_\ m/s^2$ [2]	
	(iii)	The car has a mass of 800 kg. Using your answer to part (ii) calculate the force acting on the car when the brakes are applied.	
		You are advised to show clearly how you get your answer.	
		Force – N [3]	
8586.05 R			[Turn over

	The braking force remains unchanged from the value you calculated for part (iii) . Explain carefully why a driver should allow for a greater stopping distance when towing a trailer.	
	[2]	
		Total Question 1
6.05 R		

Luminy Amer COO

32GPH1206

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

8586.05**R**

[Turn over

32GPH1207

32GPH1208

Anna -CCC D G CGE DG CEE 2D G cea ÐG C Z Z ÐG œe ÐG œe ÐG GRE ÐG œe ÐG œe ÐG GEE \mathcal{D} G GEE ÐG CCO) ÐG œe ÐG GEE ÐG œe ÐG GEE D G GQ3 ÐG GÐÐ ÐG GEE ÐG CEE DO GGE ÐG

	(ii)	Name and state the principle that allowed you to answer part (a)(i).	Examiner Only Marks Remark
		[2]	
(b)	Eve of a Cale stat	ery second a power station uses 800 MJ of input energy in the form fossil fuel. The efficiency of this power station is 0.35 (35%). culate the output electrical energy per second for this power ion.	
	You	I are advised to show clearly how you get your answer.	
	0	utput electrical energy per second	
	0	utput electrical energy per second = MJ [4]	
			[Turn over
8586.05 R			

GEE .

ÐG

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

8586.05**R**

[Turn over

32GPH1211

(a) (i)	The density of aluminium is 2.7 g/cm ³ . Explain, without giving a formula , what this means.	Examiner Only Marks Remark
(ii)	[1] Calculate the number of cm ³ in 1 m ³ .	
(111	[1]	
(
	g [1]	
(iv) Calculate the density of aluminium in kg/m ³ .	
	kg/m³ [2]	
36.05 R		

COO

2

Gete

32GPH1212

(v)	You are given a block of metal as shown in the diagram below.	Examiner Only Marks Remark
	Describe how you would determine the density of the metal. In your answer you should state the measurements you would make and the calculations needed to find the density. In this question you will be assessed on your written communication skills including the use of specialist science	
	terms.	
8586.05 R	[6]	[Turn over

Amening 1 CCCC Transfer Landa Dœ 9 06 CCCC Francisco Lancou D CG 622 Dœ Dœ 699 Dœ 000 Dœ 699 Dœ GGD Dœ 600 Dœ 633 D CE CCCC Transfer Laurenter 2 03 CCO Financial Learning Dœ COO Recently Loomby D @ 699 9 03 CCCC Transmitty Lawrence 200 633 DG 699 9 03 699

D GE my Manday GED Manday Manday D GE

Total and a

32GPH1214

(ii)	Describe what is happening to the distance between the water molecules during the following temperature changes.	Examin Marks	er Only Remark
	60 °C to 4 °C	_	
		-	
		-	
	4°C to 0°C	-	
	[2	- 2]	
		Total Qu	estion 3
		[Tur	n over
8586.05 R			

(a)	The The grip:	diagram shows an athlete who is moving a hammer in a circle. hammer is a heavy metal ball attached to a steel wire. The athlete s the steel wire at the other end as shown below.	Examiner Only Marks Remark
		© nickp37/iStock/Thinkstock.com	
	(1)	circle? [1]	
	(ii)	In what direction does this force act?	
		[1]	
	(iii)	In the case shown in the diagram what provides this force? [1]	
	(iv)	The hammer moves in a circle with constant speed. Explain why it would be incorrect to say it moves with a constant velocity.	
		[1]	
86.05 R			
		32GPH1216	

Dœ 699 D Œ (v) The table below shows some of the factors that may affect the GGÐ I Œ GEÐ DŒ Factor being changed 693 DŒ The speed is increased, the mass and GGÐ radius remain constant Dœ The radius is increased, the mass and 699 speed remain constant DŒ 620 The direction of rotation is reversed, the speed, mass and radius remain constant Dœ 633 Dœ 699 Dœ possible. 633 D Œ 633 DŒ 669 DŒ 699 DŒ 622 Dœ 699 Dœ 699 for which the force acts. Dœ 689 d œ GGÐ Dœ CEE I Œ 8586.05**R** GQÐ DŒ GGÐ Dœ

-

<u> 3</u>22

Examiner Only

(ii)	A golfer exerts a force of 9000 N on the golf ball for 1.2 milliseconds . Calculate the change in momentum of the golf ball. (1 millisecond = 0.001 seconds)	Examiner Only Marks Remark
	You are advised to show clearly how you get your answer.	
	Change in momentum = kg m/s [3]	
(iii)	At a particular point in its motion the golf ball of mass 0.06 kg is moving with a velocity of 50 m/s. Calculate its momentum.	
	You are advised to show clearly how you get your answer.	
	Momentum = kg m/s [2]	
6.05 R		
	32GPH1218	

(Learning Parent

DO NOT WRITE ON THIS PAGE

(Question 4 continues overleaf)

8586.05**R**

[Turn over

32GPH1219

32GPH1220

œ÷ G GGÐ Ð G GGE G cea G GQZ G Ð Gea 27 G CQ7. G 20 aea Ð G ADE. D G RP: G Ð Gea \mathcal{D} G COD ÐG œe Ð G GEE 20 G COZ. G Gea G Gea G Geza G GEE Ð G GEE ÐG Geze G

32GPH1222

<u>)</u> 6999

8586.05**R**

(ii)	To allow the crane to lift boats of different weights out of the wa the counterbalance weight can be moved to the left or right. If a boat heavier than 10000N is to be lifted by the crane, in wh direction should the counterbalance weight be moved? Explain your answer.	ter, nat	Examin Marks	er Only Remark
	Direction of movement is			
	Explanation			
		[2]		
			Tur	nover
			Linu	

32GPH1223

b) (i) What is meant by the centre of gravity of an object?	Examiner Only Marks Remark
[2]	
Many farmers use tractors to move large round bales as shown in the diagram below.	
Position 2 Bale is raised	
Position 1 Bale is low	
X is the position of the tractor's centre of gravity when it is not carrying any bale. Y is the position of the centre of gravity when the bale is carried in the low position and Z is the position of the centre of gravity when the bale is carried in the raised position.	
(ii) In which position of the bale is the tractor least stable? Explain your answer.	
[2]	Total Question 5
ξ	

(Learning Amon

Ananting I		
Dœ		
633		
	6 (a)	The diagram shows the particles that make up the atom of an isotope of nitrogen.
D GG		
CCCC Transfere Lawring		[1]
690		[']
Producting (service Provention of the service		(ii) What does the number 15 represent?
GOD Interesting Lawrence		[1]
I CI GII		
Paragent Lauring		(iii) How many neutrons are to be found in this nucleus of nitrogen?
		[1]
9 63		
Presenting Lowring		
E CE	8586.05 R	
Transition Learning		
CCC Transfer		
mity (Heatting)		
DGE		*32GPH1225*

Examiner Only Marks Remark

[Turn over

ob Be alc	servations of how alpha particles passed through a thin metal foil. low is a simplified diagram showing the paths taken by some of the the particles.	Marks Remark
	electrons	
	₩5	
Mo the pa	est alpha particles followed paths 1 to 5. What information about a nucleus of the atom did each of the paths taken by the alpha rticles provide?	
(i)	Paths 1 and 2	-
(::)	[1]
(11)	Patris 3, 4 and 5	-
	[1	

(Learning) Annual COOO

29 G 633

DG

CCC Transforg Lawring

32GPH1226

				_
(iii)	Particle 1 is absorbed by nucleus 2. State what nucleus 2 is and explain how nucleus 3 is formed.		Examiner Marks R	Only emark
		[0]		
(iv)	An important part of this process is the creation of a chain reaction. Describe what this is.	_ [2]		
		[2]		
THI	S IS THE END OF THE QUESTION PAPER			
			Total Ques	tion 6
8586.05 R				

8586.05**R**

32GPH1230

Linestry Reserve COO DQ C 2 2 DQ CCO DG GEE ÐG CEE DG COD ÐG GGG DG GOD DG GGE DG CEE DQ GOÐ ÐG COD DG œ ÐG COD DQ COD DQ œ DG CCD DQ GOD DQ GEE ÐG œ DG œÐ DG GƏÐ ÐG COD ÐG œ ----

DO NOT WRITE ON THIS PAGE

8586.05**R**

32GPH1231

In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

Permission to reproduce all copyright material has been applied for.

178002

DO NOT WRITE ON THIS PAGE

(Learning Among CCC. DG CG S ÐG CEE 29 G CEE ÐG C E DQ COE ÐG COD DG GEE ÐG œe ÐG CEE ÐG GEE DG CEE DG COD ÐG œe DG GÐÐ ÐQ COD ÐQ CEE ÐG GƏÐ DG GGE ÐG GEE ÐG COD DG COD ÐG COD ÐG CEE

-